magnesium stearate
Recently Published Documents


TOTAL DOCUMENTS

320
(FIVE YEARS 95)

H-INDEX

29
(FIVE YEARS 4)

Author(s):  
Virender Kumar ◽  
Bharti Sethi ◽  
Evelyn Yanez ◽  
Dennis H. Leung ◽  
Yashwardhan Y. Ghanwatkar ◽  
...  

Author(s):  
Farghana Begam ◽  
Rajalakshmi A. N ◽  
Padmapriya S

The study was aimed to formulate and evaluate Thyroid hormone (T3) immediate release tablets of a model Reference Listed Drug (RLD). The objective was to develop a cost effective immediate release tablet formulation and to optimize the formula in product development same that of the reference product. The ingredients used were API (thyroid hormone), lactose monohydrate (diluent), acacia (binder), maize starch (disintegrant), sodium chloride (alkalinizing agent) and magnesium stearate (lubricant). The concentration of maize starch and magnesium stearate were altered to reach the objective. Totally five formulations (F1 - F5) were prepared by direct compression method. The plan of work involved involved in the study was1 Selection of drug and excipients, 2Physico–chemical characterization and drug identification, 3Preformulation parameters of the drug, 4Pre–compression parameters for the tablet blend, 5Formulation and development of the tablet dosage form, 6Post compression parameters of the tablet and 7Stability study. The stability studies were performed as per ICH guidelines. Among all the formulations F5 was found to be the best as it showed better results than the other formulations. In vitro disintegration time and percentage drug release results shown satisfactory results. Stability study results showed no significant changes in the formulation. Keywords: Thyroid hormone (T3), Immediate release tablets, Direct compression, Dissolution.


Author(s):  
Sonali Agarkar

To effectively manage the diabetic mellitus type-II hyperglycemic problem, Gliclazide tablet is the sustained- release tablet that has been designed and fabricated for years. This research evaluated the effects of different grades of hydrophilic polymers in sustained release of Gliclazide tablets made with direct compression technique. HPC GF GRADE, HPMC K4M, and PARTECK® SRP 80 were used as the polymer, Avicel pH 101 (MCC) was used as the highly compressible diluent and Starch 1500 was used as insoluble tablet filler. Aerosil 300 and Magnesium Stearate was used as a Glidant and lubricant for improving the flow property of powder and to decrease the friction between dying wall and punches. Pre-compression characteristics were evaluated for angle of repose, bulk density, compressibility, tapped density, and Hausner's ratio and DSC, XRD, FT-IR. Tablets were prepared on a rotary tablet press machine (Eliza press) and after compression tablets were evaluated for weight variation, thickness, hardness, friability, drug content, and in-vitro drug release study. The physico-chemical properties of blends were estimated accelerated stability study was also developed formulations were kept for stability study for three months as per ICH guidelines and found to be stable. Advantages of formulating insoluble drugs such as Gliclazide is that if it is used in the preparation of capsules or tablets of the drug,its dose might be reduced which is economically beneficial.


2021 ◽  
Vol 10 (4) ◽  
pp. 54-62
Author(s):  
Ju. M. Kotsur ◽  
Ju. M. Ladytko ◽  
I. A. Narkevich ◽  
E. V. Flisyuk

Introduction. Direct compression technology is one of the most common tablet technologies. As known, many active pharmaceutical ingredients are not suitable for this technology without the addition of special excipients. A useful tool for determining the suitability of powdered materials for direct compression technology is the Sediment Delivery Model (SeDeM) method, based on the concept of Quality by Design. The presented method allows not only to assess the suitability of a material for direct compression, but also helps to predict the composition of a solid dosage form in the form of a tablet, which, in turn, leads to a significant reduction in experimental work carried out in the development of a new drug.Aim. Prediction of the compositions of matrix tablets based on sodium 4,4'-(propanediamido)dibenzoate with prolonged release, obtained by direct compression using the method of mathematical modeling SeDeM.Materials and methods. The objects of the study were the original substance sodium 4,4'-(propanediamido)dibenzoate, as well as a number of auxiliary substances, which included polymers used for dosage forms with prolonged release, a dusting component – magnesium stearate, and a filler – lactose monohydrate. Physicochemical and technological properties of APIs, explosives, obtained tablet mixtures and tablets were studied in accordance with the requirements of the State Pharmacopoeia of the Russian Federation XIV ed. and EP 9th ed.Results and discussion. The properties of the substance and excipients were assessed in accordance with the SeDeM method. It was found that the substance 4,4'-(propanediamido) sodium dibenzoate is not suitable for direct pressing due to poor flowability and low compressibility. Hypromellose Methocel K4M had good compressibility, but it did not have sufficient flowability. The other tested polymers had satisfactory properties for the direct compression technology. The composition of the tablet mixtures was calculated using the SeDeM method, the obtained tablet mixtures had satisfactory technological characteristics for obtaining tablets by direct compression. The tablets obtained as a result of the experiment also met the pharmacopoeial requirements.Conclusion. Prediction of the composition of sustained-release tablets based on the original substance sodium 4,4'-(propanediamido)dibenzoate was carried out using the SeDeM method. It was found that this method is suitable for the development of the composition of tablets based on sodium 4,4'-(propanediamido)dibenzoate.


Author(s):  
Abhishek Kumar Singh ◽  
Kasif Shakeel

In the present investigation, immediate release tablet formulation of etizolam was developed for management of insomnia and anxiety using different Superdisintegrants (Sodium Starch Glycolate, Croscarmellose, Crospovidone), Povidone K-30 and Magnesium stearate by wet granulation method. The drug-excipients interaction was investigated by UV spectrophotometer. The granules and tablets of Etizolam were evaluated for various pre and post compression parameters like angle of repose, compressibility index, hausners ratio, tablet hardness, friability and in vitro disintegration and dissolution studies and their results were found to be satisfactory. These results suggest that maximum in vitro dissolution profile of formulation F6 were found to have equivalent percentage of drug release and concluded that F6 is better and similar to innovator product.


Author(s):  
P. Amsa ◽  
G. K. Mathan ◽  
S. Magibalan ◽  
E. K. Velliyangiri ◽  
T. Kalaivani ◽  
...  

The major goal of this study was to develop and evaluate Sustained release matrix tablets of Gabapentin with Hibiscus rosa - sinensis leaves mucilage prepared by using wet granulation technique with microcrystalline cellulose as a diluents and magnesium stearate as a lubricant. Pre-compression and post-compression evaluation of physicochemical parameters were carried out and to be within acceptable limits. Drug and polymer compatibility were validated by FTIR measurements. Further, tablets were evaluated for in vitro release study. To get the sustained release of Gabapentin, the concentration of Hibiscus rosa- sinensis mucilage was tuned with a gas-generating agent. The % drug release of all formulation from F1 to F5 showed 91.24%, 80.24%, 70.53%, 62.12% and 49.83% respectively. All the dosage form release kinetics was computed using zero order, first order, Higuchi, and Korsmeyer–Peppas methods. From the above results, it is concluded that the n value of formulation F5 showed 0.78 suggesting anomalous (non-fickian) behavior of the drug. Mucilage from the leaves of Hibiscus rosa-sinensis has a great retarding effect in drug release from sustained release tablets.


Author(s):  
Rajeev Kumar ◽  
Sushant Kumar Shrivastava

The chief aim of the present investigation is to study the Formulation & Evaluation of Effervescent Tablet of Verapamil Hydrochloride. The floating tablets of verapamil hydrochloride were prepared by direct compression technique. For each tablet formulation,  drug, HPMC-K15M, karaya gum, sodium bicarbonate, and diluents were blended homogeneously for 10 min followed by addition of magnesium stearate. The total weight of each tablet was 300 mg. The amount of karaya gum used was in the range of 40–90 mg, whereas HPMC was used in the range of 20-40 mg. The powder mixture was further mixed for 5 min in a mortar. The resultant mixture was compressed into tablets using a Rimek rotary tablet machine. After preparation, the formulations were evaluated by various parameters. The friability of the tablet formulation varied between 0.3 ± 0.0063 to 0.59 ± 0.0076%. The weight variation of prepared tablet formulation complies with USP limits. The thickness was found to be in the range of 4.1 ± 0.48 to 4.2 ± 0.76 mm. The assay for drug content varied between 96.53 ± 0.36 to 102.03 ± 0.52%. The B1, B5, B6, B9, and B10 exhibited more than 75% drug release at 12 h. The B1 exhibited a maximum of 30 % drug release in the 1st hour and constant release for almost up to 12 h. B8 showed the least drug release among all other formulations; this may be due to the formation of a thick gel barrier on the tablet. Tablets were prepared by direct compression. Technological characteristics of floating tablets were within the Pharmacopoeial limit. Tablets floated for more than 8 h. Complete swelling was achieved by the end of 8 h, so percent swelling was determined at the end of 8 h for all the developed formulations.


2021 ◽  
pp. 1-12
Author(s):  
Yuta Otsuka ◽  
Suvra Pal

BACKGROUND: Control of the pharmaceutical manufacturing process and active pharmaceutical ingredients (API) is essential to product formulation and bioavailability. OBJECTIVE: The aim of this study is to predict tablet surface API concentration by chemometrics using integrating sphere UV-Vis spectroscopy, a non-destructive and contact-free measurement method. METHODS: Riboflavin, pyridoxine hydrochloride, dicalcium phosphate anhydrate, and magnesium stearate were mixed and ground with a mortar and pestle, and 100 mg samples were subjected to direct compression at a compaction pressure of 6 MPa at 7 mm diameter. The flat surface tablets were then analyzed by integrating sphere UV-Vis spectrometry. Standard normal variate (SNV) normalization and principal component analysis were applied to evaluate the measured spectral dataset. The spectral ranges were prepared at 300–800 nm and 500–700 nm with SNV normalization. Partial least squares (PLS) regression models were constructed to predict the API concentrations based on two previous datasets. RESULTS: The regression vector of constructed PLS regression models for each API was evaluated. API concentration prediction depends on riboflavin absorbance at 550 nm and the excipient dicalcium phosphate anhydrate. CONCLUSION: Integrating sphere UV-Vis spectrometry is a useful tool to process analytical technology.


2021 ◽  
Vol 9 (10) ◽  
pp. 1277-1286
Author(s):  
Sarvesh Patel ◽  
◽  
Jai Narayan Mishra ◽  
Dhaneswar Kumar Vishwakarma ◽  
◽  
...  

Finally in the project work Atenolol is an anti-hypertensive drug. It has been formulated into fast dissolving tablets by direct compression method by using the Excipients like lactose, sucrose magnesium stearate, sodium lauryl and sulphate and many type super disintegrates such as crosscarmellose and sodium starch glycolate and the prepared by the tablets were evaluated for the pre-compression parameter such as angle of repose, bulk density, tapped density, % index, Hausners ratio, partition coefficients, melting points, UV spectroscopy, % assay, TLC, loss on drying and post compression parameter such as thickness, hardness, friability, drugs contents, weight variation, water absorbance ratio, Invitro disintegrating time , Invitro dissolution studies. All the parameter shows good results. FDTs are prepared by direct compression method are results found to be that the among of nine formulation as the F9 to be best as its shows 87.10% (direct compression method) maximum drug release respectively. The stability testing of manufactured tablets have being at 400 c having 75% relativity humidity for 1month and found to be stable. Prepared fast dissolving tablets of Atenolol 10 mg was found to be under fasting federal condition.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1583
Author(s):  
Sergio A. Sánchez-Guirales ◽  
Noelia Jurado ◽  
Aytug Kara ◽  
Aikaterini Lalatsa ◽  
Dolores R. Serrano

Fuse deposition modelling (FDM) has emerged as a novel technology for manufacturing 3D printed medicines. However, it is a two-step process requiring the fabrication of filaments using a hot melt extruder with suitable properties prior to printing taking place, which can be a rate-limiting step in its application into clinical practice. Direct powder extrusion can overcome the difficulties encountered with fabrication of pharmaceutical-quality filaments for FDM, allowing the manufacturing, in a single step, of 3D printed solid dosage forms. In this study, we demonstrate the manufacturing of small-weight (<100 mg) solid dosage forms with high drug loading (25%) that can be easily undertaken by healthcare professionals to treat hypertension. 3D printed nifedipine minitablets containing 20 mg were manufactured by direct powder extrusion combining 15% polyethylene glycol 4000 Da, 40% hydroxypropyl cellulose, 19% hydroxy propyl methyl cellulose acetate succinate, and 1% magnesium stearate. The fabricated 3D printed minitablets of small overall weight did not disintegrate during dissolution and allowed for controlled drug release over 24 h, based on erosion. This release profile of the printed minitablets is more suitable for hypertensive patients than immediate-release tablets that can lead to a marked burst effect, triggering hypotension. The small size of the minitablet allows it to fit inside of a 0-size capsule and be combined with other minitablets, of other API, for the treatment of complex diseases requiring polypharmacy within a single dosage form.


Sign in / Sign up

Export Citation Format

Share Document