scholarly journals Three-Dimensional Printing of Curcumin-Loaded Biodegradable and Flexible Scaffold for Intracranial Therapy of Glioblastoma Multiforme

Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 471
Author(s):  
Ruixiu Li ◽  
Yunmei Song ◽  
Paris Fouladian ◽  
Mohammad Arafat ◽  
Rosa Chung ◽  
...  

A novel drug delivery system preventing Glioblastoma multiforme (GBM) recurrence after resection surgery is imperatively required to overcome the mechanical limitation of the current local drug delivery system and to offer personalised treatment options for GBM patients. In this study, 3D printed biodegradable flexible porous scaffolds were developed via Fused Deposition Modelling (FDM) three-dimensional (3D) printing technology for the local delivery of curcumin. The flexible porous scaffolds were 3D printed with various geometries containing 1, 3, 5, and 7% (w/w) of curcumin, respectively, using curcumin-loaded polycaprolactone (PCL) filaments. The scaffolds were characterised by a series of characterisation studies and in vitro studies were also performed including drug release study, scaffold degradation study, and cytotoxicity study. The curcumin-loaded PCL scaffolds displayed versatile spatiotemporal characteristics. The polymeric scaffolds obtained great mechanical flexibility with a low tensile modulus of less than 2 MPa, and 4 to 7-fold ultimate tensile strain, which can avoid the mechanical mismatch problem of commercially available GLIADEL wafer with a further improvement in surgical margin coverage. In vitro release profiles have demonstrated the sustained release patterns of curcumin with adjustable release amounts and durations up to 77 h. MTT study has demonstrated the great cytotoxic effect of curcumin-loaded scaffolds against the U87 human GBM cell line. Therefore, 3D printed curcumin-loaded scaffold has great promise to provide better GBM treatment options with its mechanical flexibility and customisability to match individual needs, preventing post-surgery GBM recurrence and eventually prolonging the life expectancy of GBM patients.

Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 63
Author(s):  
Brielle Stawicki ◽  
Tyler Schacher ◽  
Hyunah Cho

Chemotherapy and radiation remain as mainstays in the treatment of a variety of cancers globally, yet some therapies exhibit limited specificity and result in harsh side effects in patients. Brain tissue differs from other tissue due to restrictions from the blood–brain barrier, thus systemic treatment options are limited. The focus of this review is on nanogels as local and systemic drug delivery systems in the treatment of brain cancer. Nanogels are a unique local or systemic drug delivery system that is tailorable and consists of a three-dimensional polymeric network formed via physical or chemical assembly. For example, thermosensitive nanogels show promise in their ability to incorporate therapeutic agents in nano-structured matrices, be applied in the forms of sprays or sols to the area from which a tumor has been removed, form adhesive gels to fill the cavity and deliver treatment locally. Their usage does come with complications, such as handling, storage, chemical stability, and degradation. Despite these limitations, the current ongoing development of nanogels allows patient-centered treatment that can be considered as a promising tool for the management of brain cancer.


2021 ◽  
Vol 21 ◽  
Author(s):  
Madhukar Garg ◽  
Anju Goyal ◽  
Sapna Kumari

: Cubosomes are highly stable nanostructured liquid crystalline dosage delivery form derived from amphiphilic lipids and polymer-based stabilizers converting it in a form of effective biocompatible carrier for the drug delivery. The delivery form comprised of bicontinuous lipid bilayers arranged in three dimensional honeycombs like structure provided with two internal aqueous channels for incorporation of number of biologically active ingredients. In contrast liposomes they provide large surface area for incorporation of different types of ingredients. Due to the distinct advantages of biocompatibility and thermodynamic stability, cubosomes have remained the first preference as method of choice in the sustained release, controlled release and targeted release dosage forms as new drug delivery system for the better release of the drugs. As lot of advancement in the new form of dosage form has bring the novel avenues in drug delivery mechanisms so it was matter of worth to compile the latest updates on the various aspects of mentioned therapeutic delivery system including its structure, routes of applications along with the potential applications to encapsulate variety drugs to serve health related benefits.


2020 ◽  
Vol 21 ◽  
Author(s):  
Sayed Md Mumtaz ◽  
Gautam Bhardwaj ◽  
Shikha Goswami ◽  
Rajiv Kumar Tonk ◽  
Ramesh K. Goyal ◽  
...  

: The Glioblastoma Multiforme (GBM; grade IV astrocytoma) exhort tumor of star-shaped glial cell in the brain. It is a fast-growing tumor that spreads to nearby brain regions specifically to cerebral hemispheres in frontal and temporal lobes. The etiology of GBM is unknown, but major risk factors are genetic disorder like neurofibromatosis and schwanomatosis which develop the tumor in the nervous system. The management of GBM with chemo-radio therapy leads to resistance and current drug regimen like Temozolomide (TMZ) is less efficacious. The reasons behind failure of drugs are due to DNA alkylation in cell cycle by enzyme DNA guanidase and mitochondrial dysfunction. Naturally occurring bio-active compounds from plants known as phytochemicals, serve as vital sources for anti-cancer drugs. Some typical examples include taxol analogs, vinca alkaloids such as vincristine, vinblastine, podophyllotoxin analogs, camptothecin, curcumin, aloe emodin, quercetin, berberine e.t.c. These phytochemicals often act via regulating molecular pathways which are implicated in growth and progression of cancers. However the challenges posed by the presence of BBB/BBTB to restrict passage of these phytochemicals, culminates in their low bioavailability and relative toxicity. In this review we integrated nanotech as novel drug delivery system to deliver phytochemicals from traditional medicine to the specific site within the brain for the management of GBM.


2015 ◽  
Vol 7 (1-2) ◽  
pp. 65-74
Author(s):  
K. Latha ◽  
V. V. Srikanth ◽  
S. A. Sunil ◽  
N. R. Srinivasa ◽  
M. U. Uhumwangho ◽  
...  

The objective of this investigation is to study the applicability of gum karaya, the natural gum for the preparation and in vitro evaluation of losartan potassium, as Chronotherapeutic Drug Delivery System (ChDDS). The compression-coated timed-release tablets (CCT) containing losartan potassium in the core tablet were prepared by dry coating technique with different ratios of gum karaya as the outer coat. The parameters investigated were tensile strength, friability, in vitro dissolution studies and drug concentration. The optimized formulation was further characterized by powder XRD and FTIR to investigate interactions and no interactions observed. The tensile strength and friability of all the CCT were between 1.06-1.23 MN/m2 and < 0.3% respectively.  All the CCT showed a clear lag time before a burst release of drug. However, the lag time of drug release increased as the amount of gum karaya in the outer layer increased. For instance, the lag time of LGK1, LGK2, LGK3, LGK4, LGK5, LGK6 and LGK7 were 16, 10.5, 5.5, 3, 2, 1.5 and 0.5 hrs respectively.  The drug content of all the CCT was >98%. Formulation LGK3 was taken as an optimized formulation which can be exploited to achieve ChDDS of losartan potassium for the treatment of hypertension. 


2003 ◽  
Vol 92 (12) ◽  
pp. 2411-2418 ◽  
Author(s):  
Neslihan Gursoy ◽  
Jean‐Sebastien Garrigue ◽  
Alain Razafindratsita ◽  
Gregory Lambert ◽  
Simon Benita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document