scholarly journals Biochemical Basis for the Time-of-Day Effect on Glufosinate Efficacy against Amaranthus palmeri

Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2021
Author(s):  
Hudson K. Takano ◽  
Franck E. Dayan

Glufosinate, a glutamine synthetase (GS) inhibitor, often provides variable weed control depending on environmental conditions such as light, temperature and humidity at the time of application. Midday applications normally provide improved efficacy compared to applications at dawn or dusk. We investigated the biochemical basis for the time-of-day effect on glufosinate efficacy in Amaranthus palmeri. GS1/GS2 gene expression and GS1/GS2 protein abundance were assessed in different parts (young leaves, old leaves, and roots) of plants incubated in the dark compared to those in the light. The turnover of GS total activity was also evaluated overtime following glufosinate treatment at midday compared to dusk application. The results suggest that GS in A. palmeri is less expressed and less abundant in the dark compared to in the light. Midday application of glufosinate under intense light conditions following application provide full control of A. palmeri plants. Consequently, these plants are unable to recover GS activity by de novo protein synthesis. Full activity of GS is required for complete inhibition by the irreversible inhibitor glufosinate. Therefore, glufosinate applications should always be performed in the middle of the day when sunlight is intense, to prevent weed escapes from the herbicide treatment.

Author(s):  
Hudson K Takano ◽  
Franck E Dayan

Glufosinate, a glutamine synthetase (GS) inhibitor, often provides variable weed control depending on environmental conditions such as light, temperature and humidity at the time of application. Midday applications normally provide improved efficacy compared to applications at dawn or dusk. We investigated the physiological, molecular, and biochemical basis for the time-of-day effect on glufosinate efficacy in Amaranthus palmeri. GS1 and GS2 gene expression and protein abundance were assessed in different parts (young leaves, old leaves, and roots) of plants incubated in the dark compared to those in the light. The turnover of GS total activity was also evaluated overtime following glufosinate treatment at midday compared to dusk application. The results suggest that GS in A. palmeri is less expressed and less abundant in the dark compared to in the light. Midday application of glufosinate under intense light conditions in the hours following application provide full control of A. palmeri plants. Consequently, these plants are unable to recover GS activity by de novo protein synthesis. Full activity of GS is required for complete inhibition by the irreversible inhibitor glufosinate. Therefore, glufosinate applications should always be performed in the middle of the day when sunlight is intense, to prevent weed escapes from the herbicide treatment.


2020 ◽  
Vol 98 (Supplement_4) ◽  
pp. 60-61
Author(s):  
Elizabeth M Morris ◽  
Susanna E Kitts-Morgan ◽  
Dawn M Spangler ◽  
Kyle R McLeod ◽  
David L Harmon

Abstract Growing public interest in and use of Cannabidiol (CBD) in companion animals has amplified the need to elucidate potential impacts. The purpose of this investigation was to determine the impact of CBD on daily activity of adult dogs. Twenty-four dogs (18.0 ± 3.4 kg) were utilized in a randomized complete block design with treatments consisting of control, 2 mg CBD/kg BW/d, and 4 mg CBD/kg BW/d split between two treats administered after twice-daily exercise (7:00-9:00 and 17:00-19:00). Four hours each day (10:00-12:00, AM and 13:30-15:30, PM), were designated as time when no persons entered the kennels, with 2 h designated as Quiet Time and the other 2 h as Music Time, where calming music played over speakers. Quiet and Music sessions were randomly allotted to daily AM or PM times. Activity monitors were fitted to dogs’ collars for continuous collection of activity parameters. Data were collected over a 2-wk baseline period to block dogs by activity level (high or low) before randomly assigning dogs within each block to treatments. After 1 wk of treatment adaptation, activity parameters were collected for 2 wk. Data were tested for normality using the UNIVARIATE procedure in SAS before examining differences using the MIXED procedure in SAS, including effects of treatment, day, session (Quiet or Music), time of day (AM or PM), and accompanying interactions. CBD did not alter total activity points (P = 0.9971) or activity duration (P = 0.8776). CBD tended (P = 0.0692) to reduce scratching compared to control. Irrespective of treatment, dogs were more active in PM than AM (P < 0.0001). Regardless of session, dogs receiving 4 mg/kg/d tended (P = 0.0914) to be less active in the PM than control. CBD did not affect activity duration during exercise periods (P = 0.1425), but dogs receiving CBD ran more than control (P = 0.0339). These results indicate that when supplemented up to 4 mg/kg/d, CBD does not negatively impact daily activity levels of dogs.


2002 ◽  
Vol 76 (15) ◽  
pp. 7578-7586 ◽  
Author(s):  
Bodil Øster ◽  
Per Höllsberg

ABSTRACT Herpesvirus gene expression is divided into immediate-early (IE) or α genes, early (E) or β genes, and late (L) or γ genes on the basis of temporal expression and dependency on other gene products. By using real-time PCR, we have investigated the expression of 35 human herpesvirus 6B (HHV-6B) genes in T cells infected by strain PL-1. Kinetic analysis and dependency on de novo protein synthesis and viral DNA polymerase activity suggest that the HHV-6B genes segregate into six separate kinetic groups. The genes expressed early (groups I and II) and late (groups V and VI) corresponded well with IE and L genes, whereas the intermediate groups III and IV contained E and L genes. Although HHV-6B has characteristics similar to those of other roseoloviruses in its overall gene regulation, we detected three B-variant-specific IE genes. Moreover, genes that were independent of de novo protein synthesis clustered in an area of the viral genome that has the lowest identity to the HHV-6A variant. The organization of IE genes in an area of the genome that differs from that of HHV-6A underscores the distinct differences between HHV-6B and HHV-6A and may provide a basis for further molecular and immunological analyses to elucidate their different biological behaviors.


2004 ◽  
Vol 31 (8) ◽  
pp. 847 ◽  
Author(s):  
Tae-Hwan Kim ◽  
Bok-Rye Lee ◽  
Woo-Jin Jung ◽  
Kil-Yong Kim ◽  
Jean-Christophe Avice ◽  
...  

The kinetics of protein incorporation from newly-absorbed nitrogen (N, de novo protein synthesis) was estimated by 15N tracing in 18-week-old white clover plants (Trifolium repens L. cv. Regal) during 7 d of water-deficit treatment. The physiological relationship between kinetics and accumulation of proline and ammonia in response to the change in leaf-water parameters was also assessed. All leaf-water parameters measured decreased gradually under water deficit. Leaf and root dry mass was not significantly affected during the first 3 d when decreases in leaf-water parameters were substantial. However, metabolic parameters such as total N, proline and ammonia were significantly affected within 1 d of commencement of water-deficit treatment. Water-deficit treatment significantly increased the proline and NH3–NH4+ concentrations in both leaves and roots. There was a marked reduction in the amount of N incorporated into the protein fraction from the newly absorbed N (NANP) in water-deficit stressed plants, particularly in leaf tissue. This reduction in NANP was strongly associated with an increased concentration of NH3–NH4+ in roots (P≤0.05) and proline (P≤0.01) in leaves and roots. These results suggest that proline accumulation may be a sensitive biochemical indicator of plant water status and of the dynamics of de novo protein synthesis in response to stress severity.


1985 ◽  
Vol 5 (10) ◽  
pp. 2582-2589
Author(s):  
K K Frick ◽  
P J Doherty ◽  
M M Gottesman ◽  
C D Scher

Platelet-derived growth factor (PDGF) stimulates density-arrested BALB/c-3T3 cells to synthesize MEP, a lysosomal protein. This enhanced synthesis appears to be largely regulated by the PDGF-modulated accumulation of MEP mRNA, a 1.8-kilobase species. The increase in the MEP transcript, which is dependent on the PDGF concentration, begins 3 to 4 h after PDGF addition and is maximal at 12 h. The accumulation of the MEP transcript is growth-factor specific: PDGF and the tumor promoter 12-O-tetradecanoylphorbol-13-acetate, an agent which acts like PDGF, induce MEP RNA accumulation, whereas epidermal growth factor, somatomedin C, insulin, and whole plasma do not. A spontaneously transformed BALB/c-3T3 cell line (ST2-3T3), which does not require PDGF for growth, optimally expresses MEP RNA in the absence of PDGF. The PDGF-modulated increase in MEP RNA is unlike PDGF-modulated c-myc and c-fos RNA accumulation because it is blocked by cycloheximide, suggesting a requirement for de novo protein synthesis. It appears that PDGF modulates a program of gene expression with the accumulation of some transcripts, typified by MEP, being dependent upon the translation of others.


1963 ◽  
Vol 41 (1) ◽  
pp. 57-64 ◽  
Author(s):  
M. H. Wiseman-Distler ◽  
T. L. Sourkes

The role of riboflavin in the activity of monoamine oxidase (MAO) was investigated by omitting the vitamin from the diet of rats which were further treated with iproniazid, an irreversible inhibitor of the enzyme. The rate of recovery from the inhibition, presumably reflecting de novo synthesis of the enzyme, was estimated by measuring the excretion of the acidic metabolites formed after intraperitoneal administration of serotonin (5 HT) and dopamine. Consumption of the deficient diet did not impair the action of MAO on these amines. After injection of iproniazid, return to control levels of MAO activity was slower when measured by the oxidation of dopamine than of 5 HT; there was a small but significant effect of riboflavin deficiency upon the conversion of 5 HT to 5-hydroxyindoleacetic acid. This was probably due to enhanced inhibition of MAO observed in deficient rats, an effect that was also obtained when inhibitors other than iproniazid were used in vivo. Similarly, disappearance of 5 HT during incubation with a supernatant prepared from liver of deficient rats was also affected to a greater extent by these inhibitors than when the enzymatic system was prepared from control livers. This finding suggests that riboflavin deficiency renders MAO more susceptible to inhibition.


1991 ◽  
Vol 274 (3) ◽  
pp. 673-678 ◽  
Author(s):  
M Gianni ◽  
M Studer ◽  
G Carpani ◽  
M Terao ◽  
E Garattini

All-trans retinoic acid (RA) induces alkaline phosphatase (ALP) activity by 3-8-fold in murine F9 teratocarcinoma cells, in parallel with their differentiation towards primitive endoderm. The elevation of ALP activity is associated with increases in the amounts of liver/bone/kidney-type ALP protein and the respective transcript. These effects of RA are due to activation of ALP gene transcription rather than to an increase in the half-life of the mRNA. Induction of ALP mRNA does not require de novo protein synthesis, since it is not blocked by treatment with cycloheximide. Dibutyryl cyclic AMP, which is known to induce further differentiation of F9 cells from the primitive to the parietal endoderm, blocks the induction of ALP mRNA by RA.


Sign in / Sign up

Export Citation Format

Share Document