scholarly journals Nutrient Status of Cucumber Plants Affects Powdery Mildew (Podosphaera xanthii)

Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2216
Author(s):  
Yigal Elad ◽  
Dor Barnea ◽  
Dalia Rav-David ◽  
Uri Yermiyahu

We examined the effects of applications of N, P, K, Mg, and Ca through an irrigation solution and spraying K, Ca, and Mg salts on cucumber powdery mildew (CPM, Podosphaera xanthii) in potted plants and under commercial-like conditions. Spraying CaCl2 and MgCl2, or KCl and K2SO4, decreased CPM. There were significant negative correlations between the anion-related molar concentrations of the salts and disease severity. Among the sprayed treatments, NaCl provided significantly less CPM control when applied at a low (0.05 M) concentration, as compared with CaCl2 and MgCl2. When sprayed applications of Mg and K salts were analyzed separately from the untreated control, the Cl− salts were found to be more effective than the SO4−2 salts. High N and Mg concentrations in the irrigation water delivered to young, fruit-less cucumber plants reduced CPM, whereas more CPM was observed when the irrigation solution contained a medium amount of P and a high amount of K. In contrast, mature, fruit-bearing plants had less severe CPM at higher N, lower P, and higher K levels. Spraying mature plants with monopotassium phosphate, polyhalite (K2Ca2Mg(SO4)4·2H2O), and the salts mentioned above over an entire growing season suppressed CPM. CPM severity was also reduced by spray applications of Ca, Mg, and KSO4−2 and Cl− salts. Spray applications provided better CPM control than fertigation treatments. Induced resistance is probably involved in the effects of nutrients on CPM.

Plant Disease ◽  
2008 ◽  
Vol 92 (1) ◽  
pp. 174-174 ◽  
Author(s):  
A. Garibaldi ◽  
G. Gilardi ◽  
M. L. Gullino

Calendula officinalis L. (Asteraceae) (pot marigold or English marigold) is an ornamental species grown in gardens and as potted plants for the production of cut flower. It was also used in ancient Greek, Roman, Arabic, and Indian cultures as a medicinal herb as well as a dye for fabrics, foods, and cosmetics. During the summer of 2007, severe outbreaks of a previously unknown powdery mildew were observed on plants in several gardens near Biella (northern Italy). Both surfaces of leaves of infected plants were covered with dense, white mycelia and conidia. As the disease progressed, infected leaves turned yellow and died. Mycelia and conidia also were observed on stems and flower calyxes. Conidia were hyaline, ellipsoid, born in short chains (four to six conidia per chain), and measured 27.0 to 32.1 (31.4) × 12.9 to 18.4 (18.2) μm. Conidiophores measured 49 to 77.3 (67.2) × 8 to 13.3 (10.8) μm and showed a foot cell measuring 44 to 59 (51.9) × 9.3 to 12.6 (11.3) μm followed by one shorter cell measuring 15.6 to 18.9 (17.6) × 10.4 to 13.6 (12.2) μm. Fibrosin bodies were present. Chasmothecia were spherical, amber colored, with a diameter of 89 to 100 (94.5) μm. Each chasmothecium contained one ascus with eight ascospores. On the basis of its morphology, the causal agent was determined to be a Podosphaera sp. (2). The internal transcribed spacer (ITS) region of rDNA was amplified using the primers ITS4/ITS6 and sequenced. BLASTn analysis (1) of the 588 bp showed a 100% homology with the sequence of Podosphaera xanthii (2). The nucleotide sequence has been assigned GenBank Accession No. EU100973. Pathogenicity was confirmed through inoculations by gently pressing diseased leaves onto leaves of healthy C. officinalis plants. Five plants were inoculated. Five noninoculated plants served as control. Plants were maintained in a greenhouse at temperatures ranging from 20 to 26°C. Eleven days after inoculation, typical symptoms of powdery mildew developed on inoculated plants. Noninoculated plants did not show symptoms. The pathogenicity test was carried out twice. To our knowledge, this is the first report of powdery mildew on C. officinalis in Italy. C. officinalis was previously described as a host to Sphaerotheca fuliginea (synonym S. fusca) in Great Britain (4) as well as in Romania (3). Voucher specimens are available at the AGROINNOVA Collection, University of Torino. References: (1) S. F. Altschul et al. Nucleic Acids Res. 25:3389, 1997. (2) U. Braun and S. Takamatsu. Schlechtendalia 4:1, 2000. (3) E. Eliade. Rev. Appl. Mycol. 39:710, 1960. (4) F. J. Moore. Rev. Appl. Mycol. 32:380, 1953.


Plant Disease ◽  
2013 ◽  
Vol 97 (5) ◽  
pp. 691-691 ◽  
Author(s):  
S. E. Cho ◽  
M. J. Park ◽  
C. H. Shin ◽  
H. D. Shin

Farfugium japonicum (L.) Kitam., known as Japanese silver leaf, is native to Japan, Korea, and Taiwan. It is grown as an ornamental plant for garden plantings and containers not only in East Asia but more recently also in Europe and North America. Since 2003, powdery mildew infections of F. japonicum ‘Gigantea’ have been consistently found in the southern part of Korea, including the districts of Jeju, Seogwipo, Busan, Wando, and Ulleungdo. Specimens have been deposited in the Korea University Herbarium (KUS). Signs of powdery mildew first appeared as circular to irregular white patches on both sides of the leaves. The infections were usually severe on young leaves and caused malformation and browning. Appressoria on the mycelium were nipple-shaped or nearly absent. Conidiophores, measuring 160 to 280 × 10 to 12.5 μm, were simple and produced 2 to 12 immature conidia in chains, followed by 2 to 3 cells. Foot-cells in conidiophores were relatively short, 50 to 95 μm long, and constricted at the base. Conidia were hyaline, ellipsoid to ovate, 32 to 48 × 17.5 to 25 μm (length/width ratio = 1.4 to 2.3), had distinct fibrosin bodies, and produced germ tubes on the lateral position. No chasmothecia were observed. The morphology and dimentions of reproductive structures were compatible with those of Podosphaera xanthii (Castagne) U. Braun & Shishkoff (1). To confirm the identity of the causal fungus, the complete ITS region of rDNA from isolate KUS-F26469 was amplified with primers ITS5 and P3 (4) and directly sequenced. The resulting sequence of 475 bp was deposited in GenBank (Accession No. KC155426). A GenBank BLAST search of this sequence revealed 100% identity (475/475 bp) with those of many P. fusca isolates on plants in the Aster family plants including Calendula officinalis, Euryops pectinatus, Syneilesis palmata, and F. japonicum from Japan (e.g., AB040346). The P. fusca isolates listed above are now placed in P. xanthii (1). Pathogenicity was confirmed through inoculation by gently pressing diseased leaves onto leaves of three healthy potted plants of the same cultivar. Three non-inoculated plants served as controls. Plants were maintained in a greenhouse at 25 ± 2°C. Inoculated plants developed typical signs and symptoms of powdery mildew after 8 days, whereas the control plants remained symptomless. The fungus present on the inoculated leaves was morphologically identical to that originally observed on diseased plants. Powdery mildew infections of F. japonicum caused by P. fusca (syn. P. fuliginea) have been reported previously in both Japan and Korea (2). In Korea, it was listed simply as a host fungus of Ampelomyces quisqualis, which is hyperparasitic to powdery midlews, without any data on its identity (3). To our knowledge, this is the first confirmed report of powdery mildew caused by P. xanthii on F. japonicum in Korea. References: (1) U. Braun and R. T. A. Cook. Taxonomic Manual of the Erysiphales (Powdery Mildews), CBS Biodiversity Series No.11. CBS, Utrecht, 2012. (2) D. F. Farr and A. Y. Rossman. Fungal Databases. Syst. Mycol. Microbiol. Lab., Online publication, ARS, USDA, Retrieved November 14, 2012. (3) M. J. Park et al. Fungal Biol. 114:235, 2010. (4) S. Takamatsu et al. Mycol. Res. 113:117, 2009.


Plant Disease ◽  
2010 ◽  
Vol 94 (3) ◽  
pp. 339-344 ◽  
Author(s):  
A. Suthaparan ◽  
Arne Stensvand ◽  
S. Torre ◽  
Maria L. Herrero ◽  
R. I. Pettersen ◽  
...  

The effect of day length on production and germinability of conidia and severity of disease caused by Podosphaera pannosa, the causal agent of rose powdery mildew, was studied. Whole potted plants or detached leaves of Rosa interspecific hybrid ‘Mistral’ were inoculated with P. pannosa and exposed to 0, 12, 18, 20, 22, or 24 h of artificial light per day in growth chambers equipped with mercury lamps. Increasing duration of illumination from 18 to 20 to 24 h per day reduced production of conidia by 22 to 62%. Exposure to 24 h of illumination per day also strongly reduced disease severity compared with 18 h. Our results suggest that increasing day lengths from 18 h per day to 20 to 24 h may suppress the disease significantly and, thereby, reduce the need for fungicide applications against powdery mildew.


Author(s):  
Yaser M. Hafez ◽  
Asmaa S. El-Nagar ◽  
Abdelnaser A. Elzaawely ◽  
Said Kamel ◽  
Hanafey F. Maswada

Plant Disease ◽  
2014 ◽  
Vol 98 (11) ◽  
pp. 1494-1502 ◽  
Author(s):  
Lynn Esther E. Rallos ◽  
Nels G. Johnson ◽  
David G. Schmale ◽  
Aaron J. Prussin ◽  
Anton B. Baudoin

Management of grape powdery mildew (Erysiphe necator) using quinone outside inhibitors (QoIs) has eroded in an increasing number of regions due to resistance development. To determine persistence of resistance when QoIs are withdrawn, competition assays were conducted on unsprayed grape plants (Vitis vinifera ‘Chardonnay’) by cycling mixtures of resistant and sensitive isolates characterized as genetically diverse based on microsatellite analyses. Under laboratory conditions, %G143A, quantified by quantitative polymerase chain reaction (qPCR), increased significantly, indicating competitiveness of the resistant fraction. To confirm competitiveness in the field, trials using potted plants were conducted. Percent G143A tended to decrease in one growing season, probably due to spore migration and mixing of populations with natural background inoculum. In a second season, QoI resistance persisted at high frequency for 4 weeks. Resistant populations were also found to persist in one vineyard without QoI application for four consecutive years. The frequency was still about 25% in the fourth year, with higher frequency (36%) in a hotspot section. QoI-resistant populations with >5% G143A also harbored Y136F in the cyp51 gene that confers some resistance to sterol demethylation inhibitors, another fungicide class for powdery mildew control. Double resistance could have been partly responsible for persistence of QoI resistance at this location.


2016 ◽  
Vol 213 (4) ◽  
pp. 1961-1973 ◽  
Author(s):  
Jesús Martínez‐Cruz ◽  
Diego Romero ◽  
Antonio Vicente ◽  
Alejandro Pérez‐García

2008 ◽  
Vol 74 (20) ◽  
pp. 6327-6332 ◽  
Author(s):  
Josselin Montarry ◽  
Philippe Cartolaro ◽  
François Delmotte ◽  
Jérôme Jolivet ◽  
Laetitia Willocquet

ABSTRACT Isolates of the causal ascomycete of grapevine powdery mildew, Erysiphe necator, correspond to two genetically differentiated groups (A and B) that coexist on the same host. This coexistence was analyzed by investigating temporal changes in the genetic and phenotypic structures of E. necator populations during three epidemics. Group A was present only at the start of the growing season, whereas group B was present throughout all three epidemics. Group A was less aggressive in terms of germination and infection efficiency but was more aggressive than group B in terms of the latency period, lesion diameter, and spore production. Our results are consistent with a temporal differentiation of niches, preventing recombination, and suggest an association between the disease level and the frequencies of genetic groups.


2019 ◽  
Vol 102 (2) ◽  
pp. 599-599 ◽  
Author(s):  
In-Young Choi ◽  
Young-Joon Choi ◽  
Hyeon-Dong Shin

Plant Disease ◽  
2020 ◽  
pp. PDIS-01-20-0022
Author(s):  
N. C. Luecke ◽  
T. Adams ◽  
K. M. Crawford

Plant Disease ◽  
2020 ◽  
Author(s):  
Yi-Ting Xiao ◽  
Yuan-Min Shen ◽  
Chao-Jen Wang ◽  
Tung-Ching Huang

Zinnia elegans L., known as common zinnia, is an annual flowering plant belonging to the Asteraceae family and native to North America. The plant has colorful flowers and is one of the popular ornamental bedding plants for gardening. In March 2020, powdery mildew symptoms were observed in a zinnia floral field with an incidence of >70% in Dacun Township, Changhua County, Taiwan. The symptoms were spotted on the stems, flower petals and leaves which appeared as irregular colonies and white patches on the surfaces. When disease progressed, most of the plant surfaces were covered by the white fungal colonies and became yellowish. Under microscopic examination, hyphal appressoria of the fungus were indistinct or slightly nipple-shaped. The conidiophores were unbranched, erect, straight, smooth to slightly rough, 75.0 to 200.0 × 10.0 to 15.0 µm (n=10), composed of a cylindrical, flexuous foot cell, 40.0 to 100.0 × 8.8 to 15.0 µm (n=10), and following 1 to 5 shorter cells. The conidia were ellipsoid to ovoid, 25.0 to 37.5 × 15.0 to 23.8 µm (n=60), with an average length-to-width ratio of 1.8 and contained fibrosin bodies. No chasmothecia were found. Three voucher specimens (TNM Nos. F0033680, F0033681, and F0033682) were deposited in the National Museum of Natural Science, Taichung City, Taiwan. To confirm the identification, the internal transcribed spacer (ITS) regions of the three specimens were amplified using primer pairs ITS1/PM6 and PM5/ITS4 (Shen et al. 2015) and sequenced from both ends. The resulting sequences were deposited in GenBank under Accession Nos. MT568609, MT568610, and MT568611. The sequences were identical to each other and shared a 100% identity with that of Podosphaera xanthii MUMH 338 on Z. elegans from Japan (Accession No. AB040355) (Ito and Takamatsu 2010) over a 475 bp alignment. Accordingly, the fungus was identified as P. xanthii (Castagne) U. Braun & Shishkoff (Braun and Cook 2012) based on its morphological and molecular characters. Pathogenicity was demonstrated through inoculation by gently pressing naturally infected leaves onto leaves of three healthy potted common zinnia that had been sprayed with 0.02% Tween 20. Additional three non-inoculated plants treated in the same way without inoculating the powdery mildew served as the controls. Powdery mildew colonies were observed on inoculated leaves after 10 days at room temperature, later the diseased leaves became yellowish and deteriorated. The morphological traits of the fungus on the inoculated leaves were similar to those of the first observed. In addition, the ITS sequence from a colony on the inoculated leaves was 100% identical to MT568609-MT568611, fulfilling the Koch’s postulates. All the controls remained symptomless. Z. elegans is known to be a host for different species of powdery mildew in the genus Erysiphe, Golovinomyces, and Podosphaera (Farr and Rossman 2020). In Taiwan, powdery mildew has been briefly reported on zinnia without detailed descriptions (Hsieh 1983). This study confirmed P. xanthii as a causal agent of powdery mildew in Taiwan and the awareness of the disease may benefit the floral industry. To our knowledge, this is the first confirmed report of P. xanthii on Z. elegans in Taiwan.


Sign in / Sign up

Export Citation Format

Share Document