scholarly journals Multicomponent Polyphenolic Extracts from Vaccinium corymbosum at Lab and Pilot Scale. Characterization and Effectivity against Nosocomial Pathogens

Plants ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2801
Author(s):  
Eva Gato ◽  
Astrid Perez ◽  
Alicja Rosalowska ◽  
Maria Celeiro ◽  
German Bou ◽  
...  

An extraction method was designed and scaled up to produce multicomponent polyphenolic extracts from blueberries (Vaccinium corymbosum) of three different varieties. The process was specifically drawn up to comply with green chemistry principles. Extracts were obtained for the direct assessment of their antimicrobial and antiadhesive activities, and their direct use in the control of infections caused by concerning multidrug-resistant nosocomial pathogens. Analytical characterization was performed by liquid chromatography–tandem mass spectrometry (LC–MS/MS). Similar qualitative profiles were obtained in the three studied varieties with some significant quantitative differences. Up to 22 different polyphenols were identified with a clear predominance of anthocyani(di)ns followed by flavanols, non-flavonoids, and far behind by flavan-3-ols and procyanidins. The individual content of the main polyphenols was also discussed. A pilot scale extract has been also produced as a proof-of-concept, showing that scaling-up triples the content of bioactive phytochemicals. The effect of the polyphenolic extracts was analyzed against seven multidrug-resistance bacterial species by performing biofilm formation and growth and killing curves assays. All the studied varieties showed antibacterial and antiadhesive activities, being the extract containing the highest concentration of bioactive polyphenols, the most active with a high bactericidal effect.

Author(s):  
Virginia Fuochi ◽  
Massimo Caruso ◽  
Rosalia Emma ◽  
Aldo Stivala ◽  
Riccardo Polosa ◽  
...  

Background: The key ingredients of e-cigarettes liquid are commonly propane-1,2-diol (also called propylene glycol) and propane-1,2,3-triol (vegetal glycerol) and their antimicrobial effects are already established. The nicotine and flavors which are often present in e-liquids can interfere with the growth of some microorganisms. Objective: The effect of the combining these elements in e-liquids is unknown. The aim of the study was to investigate the possible effects of these liquids on bacterial growth in the presence or absence of nicotine and flavors. Methods: Susceptibilities of pathogenic strains (Klebsiella pneumoniae, Staphylococcus aureus, Pseudomonas aeruginosa, Acinetobacter baumannii, Escherichia coli, Enterococcus faecalis and Sarcina lutea) were studied by means of a multidisciplinary approach. Cell viability and antioxidant assays were also evaluated. Results: All e-liquids investigated showed antibacterial activity against at least one pathogenic strain. A higher activity was correlated to the presence of flavors and nicotine. Discussion: In most cases the value of minimal bactericidal concentration is equal to the value of minimal inhibitory concentration showing that these substances have a bactericidal effect. This effect was observed in concentrations up to 6.25% v/v. Antioxidant activity was also correlated to presence of flavors. Over time, the viability assay in human epithelial lung A549 cells showed a dose-dependent inhibition of cell growth. Conclusion: Our results have shown that flavors considerably enhance the antibacterial activity of propane-1,2-diol and propane-1,2,3-triol. This study provides important evidence that should be taken into consideration in further investigative approaches, to clarify the different sensitivity of the various bacterial species to e-liquids, including the respiratory microbiota, to highlight the possible role of flavors and nicotine.


2021 ◽  
Vol 9 (7) ◽  
pp. 1345
Author(s):  
Stefan E. Heiden ◽  
Katharina Sydow ◽  
Stephan Schaefer ◽  
Ingo Klempien ◽  
Veronika Balau ◽  
...  

The emergence of carbapenemase-producing Enterobacteriaceae limits therapeutic options and presents a major public health problem. Resistances to carbapenems are mostly conveyed by metallo-beta-lactamases (MBL) including VIM, which are often encoded on resistance plasmids. We characterized four VIM-positive isolates that were obtained as part of a routine diagnostic screening from two laboratories in north-eastern Germany between June and August 2020. Whole-genome sequencing was performed to address (a) phylogenetic properties, (b) plasmid content, and (c) resistance gene carriage. In addition, we performed phenotypic antibiotic and mercury resistance analyses. The genomic analysis revealed three different bacterial species including C. freundii, E. coli and K. oxytoca with four different sequence types. All isolates were geno- and phenotypically multidrug-resistant (MDR) and the phenotypic profile was explained by the underlying resistance gene content. Three isolates of four carried nearly identical VIM-1-resistance plasmids, which in addition encoded a mercury resistance operon and showed some similarity to two publicly available plasmid sequences from sources other than the two laboratories above. Our results highlight the circulation of a nearly identical IncN-type VIM-1-resistance plasmid in different Enterobacteriaceae in north-eastern Germany.


2020 ◽  
Vol 11 (3) ◽  
pp. 66
Author(s):  
Umar M. Badeggi ◽  
Jelili A. Badmus ◽  
Subelia S. Botha ◽  
Enas Ismail ◽  
Jeanine L. Marnewick ◽  
...  

In this study, procyanidin dimers and Leucosidea sericea total extract (LSTE) were employed in the synthesis of silver nanoparticles (AgNPs) and characterized by ultraviolet-visible (UV-Visible) spectroscopy, high-resolution transmission electron microscopy (HRTEM), selected area electron diffraction (SAED), X-ray diffraction (XRD), and dynamic light scattering (DLS) techniques. AgNPs of about 2–7 nm were obtained. DLS and stability evaluations confirmed that the AgNPs/procyanidins conjugates were stable. The formed nanoparticles exhibited good inhibitory activities against the two enzymes studied. The IC50 values against the amylase enzyme were 14.92 ± 1.0, 13.24 ± 0.2, and 19.13 ± 0.8 µg/mL for AgNPs coordinated with LSTE, F1, and F2, respectively. The corresponding values for the glucosidase enzyme were 21.48 ± 0.9, 18.76 ± 1.0, and 8.75 ± 0.7 µg/mL. The antioxidant activities were comparable to those of the intact fractions. The AgNPs also demonstrated bacterial inhibitory activities against six bacterial species. While the minimum inhibitory concentrations (MIC) of F1-AgNPs against Pseudomonas aeruginosa and Staphylococcus aureus were 31.25 and 15.63 µg/mL respectively, those of LSTE-AgNPs and F2-AgNPs against these organisms were both 62.50 µg/mL. The F1-AgNPs demonstrated a better bactericidal effect and may be useful in food packaging. This research also showed the involvement of the procyanidins as reducing and capping agents in the formation of stable AgNPs with potential biological applications.


2003 ◽  
Vol 69 (7) ◽  
pp. 4012-4018 ◽  
Author(s):  
Ariel Maoz ◽  
Ralf Mayr ◽  
Siegfried Scherer

ABSTRACT The temporal stability and diversity of bacterial species composition as well as the antilisterial potential of two different, complex, and undefined microbial consortia from red-smear soft cheeses were investigated. Samples were collected twice, at 6-month intervals, from each of two food producers, and a total of 400 bacterial isolates were identified by Fourier-transform infrared spectroscopy and 16S ribosomal DNA sequence analysis. Coryneform bacteria represented the majority of the isolates, with certain species being predominant. In addition, Marinolactobacillus psychrotolerans, Halomonas venusta, Halomonas variabilis, Halomonas sp. (106 to 107 CFU per g of smear), and an unknown, gram-positive bacterium (107 to 108 CFU per g of smear) are described for the first time in such a consortium. The species composition of one consortium was quite stable over 6 months, but the other consortium revealed less diversity of coryneform species as well as less stability. While the first consortium had a stable, extraordinarily high antilisterial potential in situ, the antilisterial activity of the second consortium was lower and decreased with time. The cause for the antilisterial activity of the two consortia remained unknown but is not due to the secretion of soluble, inhibitory substances by the individual components of the consortium. Our data indicate that the stability over time and a potential antilisterial activity are individual characteristics of the ripening consortia which can be monitored and used for safe food production without artificial preservatives.


1948 ◽  
Vol 88 (1) ◽  
pp. 99-131 ◽  
Author(s):  
Harry Eagle ◽  
A. D. Musselman

1. The concentrations of penicillin G which (a) reduced the net rate of multiplication, (b) exerted a net bactericidal effect, and (c) killed the organisms at a maximal rate, have been defined for a total of 41 strains of α- and ß-hemolytic streptococci, Staphylococcus aureus and Staphylococcus albus, Diplococcus pneumoniae, and the Reiter treponoma. 2. The concentration which killed the organisms at a maximal rate was 2 to 20 times the minimal effective level ("sensitivity" as ordinarily defined). With some organisms, even a 32,000-fold increase beyond this maximally effective level did not further increase the rate of its bactericidal effect. However, with approximately half the strains here studied (all 4 strains of group B ß-hemolytic streptococci, 4 of 5 group C strains, 5 of 7 strains of Streptococcus fecalis, 2 of 4 other α-hemolytic streptococci, and 4 of 9 strains of staphylococci), when the concentration of penicillin was increased beyond that optimal level, the rate at which the organisms died was paradoxically reduced rather than increased, so that the maximal effect was obtained only within a relatively narrow optimal zone. 3. There were marked differences between bacterial species, and occasionally between different strains of the same species, not only with respect to the effective concentrations of penicillin, but also with respect to the maximal rate at which they could be killed by the drug in any concentration. Although there was a rough correlation between these two factors, there were many exceptions; individual strains affected only by high concentrations of penicillin might nevertheless be killed rapidly, while strains sensitive to minute concentrations might be killed only slowly. 4. Within the same bacterial suspension, individual organisms varied only to a minor degree with respect to the effective concentrations of penicillin. They varied strikingly, however, in their resistance to penicillin as measured by the times required to kill varying proportions of the cells.


2021 ◽  
Vol 7 (6) ◽  
pp. 433
Author(s):  
Ahmad Ibrahim ◽  
Lucie Peyclit ◽  
Rim Abdallah ◽  
Saber Khelaifia ◽  
Amanda Chamieh ◽  
...  

Candida auris is an emerging multidrug-resistant yeast causing nosocomial infections and associated with high mortality in immunocompromised patients. Rapid identification and characterisation are necessary for diagnosis and containing its spread. In this study, we present a selective culture medium for all C. auris clades. This medium is sensitive with a limit of detection ranging between 101 and 102 CFU/mL. The 100% specificity of SCA (specific C. auris) medium is confirmed on a set of 135 Candida strains, 50 bacterial species and 200 human stool samples. Thus, this medium specifically selects for C. auris isolation from clinical samples, allowing the latter to study its phenotypic profile.


2021 ◽  
Author(s):  
Jane Hawkey ◽  
Hugh Cottingham ◽  
Alex Tokolyi ◽  
Ryan R Wick ◽  
Louise M Judd ◽  
...  

Linear plasmids are extrachromosomal DNA that have been found in a small number of bacterial species. To date, the only linear plasmids described in the Enterobacteriaceae family belong to Salmonella, first found in Salmonella Typhi. Here, we describe a collection of 12 isolates of the Klebsiella pneumoniae species complex in which we identified linear plasmids. We used this collection to search public sequence databases and discovered an additional 74 linear plasmid sequences in a variety of Enterobacteriaceae species. Gene content analysis divided these plasmids into five distinct phylogroups, with very few genes shared across more than two phylogroups. The majority of linear plasmid-encoded genes are of unknown function, however each phylogroup carried its own unique toxin-antitoxin system and genes with homology to those encoding the ParAB plasmid stability system. Passage in vitro of the 12 linear plasmid-carrying Klebsiella isolates in our collection (which include representatives of all five phylogroups) indicated that these linear plasmids can be stably maintained, and our data suggest they can transmit between K. pneumoniae strains (including members of globally disseminated multidrug resistant clones) and also between diverse Enterobacteriaceae species. The linear plasmid sequences, and representative isolates harbouring them, are made available as a resource to facilitate future studies on the evolution and function of these novel plasmids.


2021 ◽  
Vol 3 (1) ◽  
pp. 6-12
Author(s):  
M Mustapha ◽  
P Goel

The most widespread ailments in dogs are urinary tract infections (UTIs) caused by bacterial species. It is necessary to recognize the prevailing bacterial pathogens and their susceptibility to antimicrobial agents to effectively treat UTIs. The present study aimed to classify the bacterial organism that causes UTIs in dogs and their patterns of antimicrobial resistance. A total of 141 urine samples were collected from diseased dogs in Veterinary Clinical Complex LUVAS in Hisar, India. Culture, biochemical and sensitivity testing were performed for each of the urine samples based on standard method. Of the total 141 urine samples from dogs, 21 (14.9%) isolates were identified as Klebsiella spp. The isolates were found to be highly resistant to ampicillin (100%), penicillin G (100%), oxytetracycline (100%), enrofloxacin (85.7%), chloramphenicol (80.6%), ceftriaxone (76.2%) and cloxacillin (71.4%), while susceptibility was observed against gentamicin (100%), amikacin (100%) and neomycin (90.5%). In the current study, 19 out of 21 identified isolates were found to be multidrug-resistant. This study indicates that dogs in the study area are found to harbor highly resistant Klebsiella spp. Therefore, when deciding on the antibiotic regimen for UTIs cases, Vets should consider resistance profile of chosen antibacterial agents before usage in order to discourage dissemination of resistant organisms in the study area.


2018 ◽  
Vol 85 (2) ◽  
Author(s):  
John-Jairo Aguilera-Correa ◽  
Aranzazu Mediero ◽  
Francisco-Miguel Conesa-Buendía ◽  
Ana Conde ◽  
María-Ángeles Arenas ◽  
...  

ABSTRACTJoint prosthesis failure is mainly related to aseptic loosening and prosthetic joint infections, both of which are associated with high morbidity and substantial costs for patients and health systems. The development of a biomaterial that is capable of stimulating bone growth while minimizing bacterial adhesion would reduce the incidence of prosthetic failure. We report antibacterial and osteostimulatory effects in a novel fluorine-phosphorus (F-P)-doped TiO2oxide film grown on Ti-6Al-4V alloy with a nanostructure of bottle-shaped nanotubes (bNT)using five bacterial species (Staphylococcus aureus,Staphylococcus epidermidis,Escherichia coli,Pseudomonas aeruginosa, andStenotrophomonas maltophilia) and MCT3T3-E1 osteoblastic cells. The interaction between the bacteria and bNT Ti-6Al-4V was complex, as the adhesion of four bacterial species decreased (two staphylococcus species,E. coli, andS. maltophilia), and the viability of staphylococci andS. maltophiliaalso decreased because of the aluminum (Al) released by bNT Ti-6Al-4V. This released Al can be recruited by the bacteria through siderophores and was retained only by the Gram-negative bacteria tested.P. aeruginosashowed higher adhesion on bNT Ti-6Al-4V than on chemically polished (CP) samples of Ti-6Al-4V alloy and an ability to mobilize Al from bNT Ti-6Al-4V. The cell adhesion and proliferation of MCT3T3-E1 osteoblastic cells significantly increased at 48 and 168 h, as did the matrix mineralization of these cells and the gene expression levels of three of the most important markers related to bone differentiation. According to our results, the bNT Ti-6Al-4V alloy could have clinical application, preventing infection and stimulating bone growth and thus preventing the two main causes of joint prosthesis failure.IMPORTANCEThis work evaluates F-P-doped bNT Ti-6Al-4V from microbiological and cellular approaches. The bacterial results highlight that the antibacterial ability of bNT Ti-6Al-4V is the result of a combination of antiadhesive and bactericidal effects exerted by Al released from the alloy. The cell results highlight that F-P bNT Ti-6Al-4V alloy increases osseointegration due to modification of the chemical composition of the alloy resulting from P incorporation and not due to the nanostructure, as reported previously. A key finding was the detection of Al release from inside the bNT Ti-6Al-4V nanostructures, a result of the nanostructure growth during the anodizing process that is in part responsible for its bactericidal effect.


2017 ◽  
Vol 71 (2) ◽  
pp. 87-97 ◽  
Author(s):  
Ana Stajic ◽  
Biljana Jancic-Stojanovic

Background. Teicoplanin and vancomycin are glycopeptide antibiotics currently in use for treatment of multidrug-resistant bacterial infections. Scope and Approach. Severe undesirable effects, such as ototoxicity, nephrotoxicity and neutropenia have been reported for vancomycin and teicoplanin, which necessitates monitoring the concentration of these two drugs in different biological samples. In order to obtain precise and accurate results, sensitive, reliable and fast methods are necessary. The main aim of this mini review is to give a clear and concise overview of the recently developed, validated, novel and improved methods for glycopeptide antibiotic analyses in various biological matrices. Also, the variability of the matrices requires optimal and effective sample preparation procedures to be developed, and so these are discussed. Key Findings and Conclusions. Different liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods have been described for quantitative determination of glycopeptide antibiotics in various biological matrices. It was shown that protein precipitation was a convenient method for sample preparation despite the high number of novel sample preparation methods.


Sign in / Sign up

Export Citation Format

Share Document