scholarly journals Investigating the Phenotypic Plasticity of the Invasive Weed Trianthema portulacastrum L.

Plants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 77
Author(s):  
Marwa A. Fakhr ◽  
Yasser S. A. Mazrou ◽  
Faten Y. Ellmouni ◽  
AlBaraa ElSaied ◽  
Mohamed Elhady ◽  
...  

Phenotypic plasticity is frequently highlighted as a key factor in plant invasiveness, as it enables invasive species to adapt to diverse, complicated habitats. Trianthema portulacastrum is one of the most common aggressive species that threaten different crops around the world. Phenotypic plasticity in T. portulacastrum was investigated by comparing variation in germination, vegetative macromorphology, photosynthetic pigments, stomatal complexes, and seed micromorphological traits of 35 samples collected from 35 different localities. One-way cluster analysis and principal component analysis (PCA) were used to classify samples into homogeneous groups based on the measured traits. Pairwise statistical comparisons were conducted between the three resulting groups. The phenotypic plasticity index (PI) was calculated and compared among different groups of characters. Results showed that photosynthetic pigments and macromorphological characteristics had the highest PI, followed by seed micromorphology, and then stomatal complex traits, while germination parameters showed the lowest PI. We propose that soil moisture, salinity, and temperature are the most determinative and explanative variables of the variation between the three classified groups. We strongly believe that the phenotypic plasticity of T. portulacastrum will support species abundance and spread even under expected changes in climatic conditions, in contrast to the vulnerable traditional crops.

2020 ◽  
Vol 21 ◽  
pp. 00041
Author(s):  
Leonid Esipenko ◽  
Aleksandr Podvarko ◽  
Anatoliy Savva

Invasive weeds are characterized by high phenotypic plasticity, which allows them to adapt to new climatic conditions due to variable phenotypes that have arisen in the historical time scale under the control of natural selection. Colonization of such plants takes place locally in accessible anthropogenic cenoses. In the South of Russia the most typical invasive plant is Ambrosia artemosiifolia L. We We examined the discrete variation by vegetative feature — shoot length according to 12 genotypes of ragweed in agrocenoses of Krasnodar Krai.


Forests ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 334
Author(s):  
Norbert Szymański ◽  
Sławomir Wilczyński

The present study identified the similarities and differences in the radial growth responses of 20 provenances of 51-year-old European larch (Larix decidua Mill.) trees from Poland to the climatic conditions at three provenance trials situated in the Polish lowlands (Siemianice), uplands (Bliżyn) and mountains (Krynica). A chronology of radial growth indices was developed for each of 60 European larch populations, which highlighted the interannual variations in the climate-mediated radial growth of their trees. With the aid of principal component, correlation and multiple regression analysis, supra-regional climatic elements were identified to which all the larch provenances reacted similarly at all three provenance trials. They increased the radial growth in years with a short, warm and precipitation-rich winter; a cool and humid summer and when high precipitation in late autumn of the previous year was noted. Moreover, other climatic elements were identified to which two groups of the larch provenances reacted differently at each provenance trial. In the lowland climate, the provenances reacted differently to temperature in November to December of the previous year and July and to precipitation in September. In the upland climate, the provenances differed in growth sensitivity to precipitation in October of the previous year and June–September. In the mountain climate, the provenances responded differently to temperature and precipitation in September of the previous year and to precipitation in February, June and September of the year of tree ring formation. The results imply that both climatic factors and origin (genotype), i.e., the genetic factor, mediate the climate–growth relationships of larch provenances.


1991 ◽  
Vol 69 (1) ◽  
pp. 34-38 ◽  
Author(s):  
M. Pigliucci ◽  
M. G. Politi ◽  
D. Bellincampi

Implications of phenotypic plasticity in a subspecific numerical taxonomic study of Ornithogalum montanum Cyr. (Liliaceae) are discussed. Clones belonging to six natural populations were grown in a glasshouse, and their morphological response to three water dosages was analyzed by means of principal component analysis. PC-1 ranks the three groups of replicated populations, suggesting a high degree of phenotypic plasticity; on the other hand, PC-3 is almost environmentally independent. Proximities in the phenetic space are shown to be at least partially environmentally dependent, suggesting a reaction norm for the character correlation matrix. The results do not corroborate a previous recognition of six subspecies of O. montanum. Key words: phenotypic plasticity, numerical taxonomy, Ornithogalum, reaction norm, principal component analysis.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 913
Author(s):  
Serajis Salekin ◽  
Cristian Higuera Catalán ◽  
Daniel Boczniewicz ◽  
Darius Phiri ◽  
Justin Morgenroth ◽  
...  

Taper functions are important tools for forest description, modelling, assessment, and management. A large number of studies have been conducted to develop and improve taper functions; however, few review studies have been dedicated to addressing their development and parameters. This review summarises the development of taper functions by considering their parameterisation, geographic and species-specific limitations, and applications. This study showed that there has been an increase in the number of studies of taper function and contemporary methods have been developed for the establishment of these functions. The reviewed studies also show that taper functions have been developed from simple equations in the early 1900s to complex functions in modern times. Early taper functions included polynomial, sigmoid, principal component analysis (PCA), and linear mixed functions, while contemporary machine learning (ML) approaches include artificial neural network (ANN) and random forest (RF). Further analysis of the published literature also shows that most of the studies of taper functions have been carried out in Europe and the Americas, meaning most taper equations are not specifically applicable to tropical tree species. Developing well-conditioned taper functions requires reducing the variation due to species, measurement techniques, and climatic conditions, among other factors. The information presented in this study is important for understanding and developing taper functions. Future studies can focus on developing better taper functions by incorporating emerging remote sensing and geospatial datasets, and using contemporary statistical approaches such as ANN and RF.


2020 ◽  
Vol 164 ◽  
pp. 07028
Author(s):  
Anastasia Vasilieva ◽  
Raisa Belaya

Significant heterogeneity of the level of development of the Russian border, including in the field of recreation, imposes requirements for differentiation in the regional policy. Definition of the types of territories helps to solve applied management tasks more effectively. In this context, the factors by which these types were formed are important. To solve this problem, the authors conducted a factor analysis through the principal component method using oblique factor rotation. Three blocks of variables were analyzed that characterize the subjects of the Russian Federation that have land borders on the mainland (including river and lake borders) and sea borders with neighboring countries located on the map clockwise from Norway to the United States (border regions of Russia) for the period from 2010 to 2018. As a result, five factors were identified: the factor of the demand for the services of the recreational system, the factor of the development of the infrastructure of the recreational system in climatic conditions, the environmental safety factor, the factor of investment in the development of the recreational system infrastructure, the factor of the location at the border. The results of the study can be used as a practical tool for developing recommendations in the field of regional policy aimed at development of a recreational system, taking into account the factors determined for each identified group. The results of the study were obtained in the framework of the state task of the IE KarRC RAS on the topic “Institutions and social inequality in the face of global challenges and regional restrictions”.


2012 ◽  
Vol 8 ◽  
pp. 77-89 ◽  
Author(s):  
Mukesh Kumar ◽  
Rajan Kumar Gupta ◽  
AB Bhatt ◽  
SC Tiwari

Cyanobacteria constitute the largest, most diverse and widely distributed group of prokaryotes that perform oxygenic photosynthesis. These are known to comprise a diverse flora of morphologically distinct forms. Some species are epiphytic occurring on a variety of plants. The present study was undertaken to study the distribution pattern of epiphytic cyanobacterial flora in the foot-hills of Garhwal Himalaya. An extensive survey was carried out in different seasons at four cyanobacteria-rich localities (Dakpatthar, Kotdwar, Rishikesh and Laldhang) of Uttarakhand state of India. A total of 39 epiphytic cyanobacterial taxa (12 heterocystous and 27 non-heterocystous) belonging to 2 orders, 7 families and 17 genera were recorded from this region. Highest number of species (25) was reported from Rishikesh, followed by Kotdwar with 14 species and Laldhang and Dakpatthar each with 12 species. Principal Component Analysis showed significant variation for epiphytic cyanobacterial diversity among studied sites, whereas cluster analysis categorized epiphytic cyanobacterial diversity under two categories, viz. Cluster I with 9 species and Cluster II with 30 species. Study concludes that variation in epiphytic cyanobacterial diversity might be compared to physicochemical properties of soil and climatic conditions along altitudes.doi: http://dx.doi.org/10.3126/botor.v8i0.5955 Botanica Orientalis – Journal of Plant Science (2011) 8: 77-89


Land ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 63 ◽  
Author(s):  
Sheikh Adil Edrisi ◽  
Vishal Tripathi ◽  
Purushothaman Chirakkuzhyil Abhilash

The successful utilization of marginal and degraded lands for biomass and bioenergy production depends upon various factors such as climatic conditions, the adaptive traits of the tree species and their growth rate and respective belowground responses. The present study was undertaken to evaluate the growth performance of a bioenergy tree (Dalbergia sissoo Roxb.) grown in marginal and degraded land of the Mirzapur district of Uttar Pradesh, India and to analyze the effect of D. sissoo plantations on soil quality improvement over the study years. For this, a soil quality index (SQI) was developed based on principal component analysis (PCA) to understand the effect of D. sissoo plantations on belowground responses. PCA results showed that among the studied soil variables, bulk density (BD), moisture content (MC), microbial biomass carbon (MBC) and soil urease activity (SUA) are the key variables critically influencing the growth of D. sissoo. The SQI was found in an increasing order with the growth period of D. sissoo. (i.e., from 0.419 during the first year to 0.579 in the fourth year). A strong correlation was also observed between the growth attributes (diameter at breast height, R2 = 0.870; and plant height, R2 = 0.861) and the soil quality (p < 0.01). Therefore, the developed SQI can be used as key indicator for monitoring the restoration potential of D. sissoo growing in marginal and degraded lands and also for adopting suitable interventions to further improve soil quality for multipurpose land restoration programs, thereby attaining land degradation neutrality and United Nations Sustainable Development Goals.


AoB Plants ◽  
2019 ◽  
Vol 11 (4) ◽  
Author(s):  
Ming Hao Wang ◽  
Jing Ru Wang ◽  
Xiao Wei Zhang ◽  
Ai Ping Zhang ◽  
Shan Sun ◽  
...  

Abstract Global climate change is expected to affect mountain ecosystems significantly. Phenotypic plasticity, the ability of any genotype to produce a variety of phenotypes under different environmental conditions, is critical in determining the ability of species to acclimate to current climatic changes. Here, to simulate the impact of climate change, we compared the physiology of species of the genus Picea from different provenances and climatic conditions and quantified their phenotypic plasticity index (PPI) in two contrasting common gardens (dry vs. wet), and then considered phenotypic plastic effects on their future adaptation. The mean PPI of the photosynthetic features studied was higher than that of the stomatal features. Species grown in the arid and humid common gardens were differentiated: the stomatal length (SL) and width (SW) on the adaxial surface, the transpiration rate (Tr) and leaf mass per area (LMA) were more highly correlated with rainfall than other traits. There were no significant relationships between the observed plasticity and the species’ original habitat, except in P. crassifolia (from an arid habitat) and P. asperata (from a humid habitat). Picea crassifolia exhibited enhanced instantaneous efficiency of water use (PPI = 0.52) and the ratio of photosynthesis to respiration (PPI = 0.10) remained constant; this species was, therefore, considered to the one best able to acclimate when faced with the effects of climate change. The other three species exhibited reduced physiological activity when exposed to water limitation. These findings indicate how climate change affects the potential roles of plasticity in determining plant physiology, and provide a basis for future reforestation efforts in China.


2020 ◽  
Vol 125 (6) ◽  
pp. 969-980 ◽  
Author(s):  
Silvia Matesanz ◽  
Marina Ramos-Muñoz ◽  
Mario Blanco-Sánchez ◽  
Adrián Escudero

Abstract Background and Aims Plants experiencing contrasting environmental conditions may accommodate such heterogeneity by expressing phenotypic plasticity, evolving local adaptation or a combination of both. We investigated patterns of genetic differentiation and plasticity in response to drought in populations of the gypsum specialist Lepidium subulatum. Methods We created an outdoor common garden with rain exclusion structures using 60 maternal progenies from four distinct populations that substantially differ in climatic conditions. We characterized fitness, life history and functional plasticity in response to two contrasting treatments that realistically reflect soil moisture variation in gypsum habitats. We also assessed neutral genetic variation and population structure using microsatellite markers. Key Results In response to water stress, plants from all populations flowered earlier, increased allocation to root tissues and advanced leaf senescence, consistent with a drought escape strategy. Remarkably, these probably adaptive responses were common to all populations, as shown by the lack of population × environment interaction for almost all functional traits. This generally common pattern of response was consistent with substantial neutral genetic variation and large differences in population trait means. However, such population-level trait variation was not related to climatic conditions at the sites of origin. Conclusions Our results show that, rather than ecotypes specialized to local climatic conditions, these populations are composed of highly plastic, general-purpose genotypes in relation to climatic heterogeneity. The strikingly similar patterns of plasticity among populations, despite substantial site of origin differences in climate, suggest past selection on a common norm of reaction due to similarly high levels of variation within sites. It is thus likely that plasticity will have a prevalent role in the response of this soil specialist to further environmental change.


Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5203
Author(s):  
Saud L. Al-Rowaily ◽  
Ahmed M. Abd-ElGawad ◽  
Abdulaziz M. Assaeed ◽  
Abdelbaset M. Elgamal ◽  
Abd El-Nasser G. El Gendy ◽  
...  

Plants are considered green resources for thousands of bioactive compounds. Essential oils (EOs) are an important class of secondary compounds with various biological activities, including allelopathic and antimicrobial activities. Herein, the present study aimed to compare the chemical profiles of the EOs of the widely distributed medicinal plant Calotropis procera collected from Saudi Arabia and Egypt. In addition, this study also aimed to assess their allelopathic and antimicrobial activities. The EOs from Egyptian and Saudi ecospecies were extracted by hydrodistillation and analyzed via GC-MS. The correlation between the analyzed EOs and those published from Egypt, India, and Nigeria was assessed by principal component analysis (PCA) and agglomerative hierarchical clustering (AHC). The allelopathic activity of the extracted EOs was tested against two weeds (Bidens pilosa and Dactyloctenium aegyptium). Moreover, the EOs were tested for antimicrobial activity against seven bacterial and two fungal strains. Ninety compounds were identified from both ecospecies, where 76 compounds were recorded in Saudi ecospecies and 33 in the Egyptian one. Terpenes were recorded as the main components along with hydrocarbons, aromatics, and carotenoids. The sesquiterpenes (54.07%) were the most abundant component of EO of the Saudi sample, while the diterpenes (44.82%) represented the mains of the Egyptian one. Hinesol (13.50%), trans-chrysanthenyl acetate (12.33%), 1,4-trans-1,7-cis-acorenone (7.62%), phytol (8.73%), and myristicin (6.13%) were found as the major constituents of EO of the Saudi sample, while phytol (38.02%), n-docosane (6.86%), linoleic acid (6.36%), n-pentacosane (6.31%), and bicyclogermacrene (4.37%) represented the main compounds of the Egyptian one. It was evident that the EOs of both ecospecies had potent phytotoxic activity against the two tested weeds, while the EO of the Egyptian ecospecies was more effective, particularly on the weed D. aegyptium. Moreover, the EOs showed substantial antibacterial and antifungal activities. The present study revealed that the EOs of Egyptian and Saudi ecospecies were different in quality and quantity, which could be attributed to the variant environmental and climatic conditions. The EOs of both ecospecies showed significant allelopathic and antimicrobial activity; therefore, these EOs could be considered as potential green eco-friendly resources for weed and microbe control, considering that this plant is widely grown in arid habitats.


Sign in / Sign up

Export Citation Format

Share Document