scholarly journals Research Progress on Plant Long Non-Coding RNA

Plants ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 408
Author(s):  
Ling Wu ◽  
Sian Liu ◽  
Haoran Qi ◽  
Heng Cai ◽  
Meng Xu

Non-coding RNAs (ncRNAs) that were once considered “dark matter” or “transcriptional noise” in genomes are research hotspots in the field of epigenetics. The most well-known microRNAs (miRNAs) are a class of short non-coding, small molecular weight RNAs with lengths of 20–24 nucleotides that are highly conserved throughout evolution. Through complementary pairing with the bases of target sites, target gene transcripts are cleaved and degraded, or translation is inhibited, thus regulating the growth and development of organisms. Unlike miRNAs, which have been studied thoroughly, long non-coding RNAs (lncRNAs) are a group of poorly conserved RNA molecules with a sequence length of more than 200 nucleotides and no protein encoding capability; they interact with large molecules, such as DNA, RNA, and proteins, and regulate protein modification, chromatin remodeling, protein functional activity, and RNA metabolism in vivo through cis- or trans-activation at the transcriptional, post-transcriptional, and epigenetic levels. Research on plant lncRNAs is just beginning and has gradually emerged in the field of plant molecular biology. Currently, some studies have revealed that lncRNAs are extensively involved in plant growth and development and stress response processes by mediating the transmission and expression of genetic information. This paper systematically introduces lncRNA and its regulatory mechanisms, reviews the current status and progress of lncRNA research in plants, summarizes the main techniques and strategies of lncRNA research in recent years, and discusses existing problems and prospects, in order to provide ideas for further exploration and verification of the specific evolution of plant lncRNAs and their biological functions.

2008 ◽  
Vol 36 (6) ◽  
pp. 1197-1200 ◽  
Author(s):  
Jan Stenvang ◽  
Morten Lindow ◽  
Sakari Kauppinen

miRNAs (microRNAs) comprise a class of small endogenous non-coding RNAs that post-transcriptionally repress gene expression by base-pairing with their target mRNAs. Recent evidence has shown that miRNAs play important roles in a wide variety of human diseases, such as viral infections, cancer and cardiovascular diseases, and thus miRNAs have rapidly emerged as potential targets for therapeutics. LNAs (locked nucleic acids) comprise a class of bicyclic conformational analogues of RNA, which exhibit high binding affinity to complementary RNA molecules and high stability in blood and tissues in vivo. Recent reports on LNA-mediated miRNA silencing in rodents and primates support the potential of LNA-modified oligonucleotides in studying miRNA functions in vivo and in the future development of miRNA-based therapeutics.


2021 ◽  
pp. 002580242110644
Author(s):  
Ye-Hui Lv ◽  
Zhuo-Qun Wang ◽  
Qiang Lei ◽  
Jiu-Hong Zhao ◽  
Zhi-Fang Yang

Postmortem interval (PMI) estimation has always been a crucial focus and challenging issue in forensic pathology. In recent years, specific RNA molecules and their variation have been used worldwide to estimate PMI. In this review, we summarize the methods used to detect non-coding RNAs (ncRNAs) for PMI estimation based on the literature, show the existing problems and development trends, and provide technical references for relevant studies and estimation practices.


2019 ◽  
Author(s):  
Riccardo Delli Ponti ◽  
Alexandros Armaos ◽  
Gian Gaetano Tartaglia

ABSTRACTHere we introduce CROSSalive, an algorithm to predict the RNA secondary structure profile (double and single stranded regions) in vivo and without sequence length limitations. Using predictions of protein interactions CROSSalive predicts the effect of N6 adenosine methylation (m6a) on RNA structure. Trained on icSHAPE data in presence (m6a+) and absence (m6a-) of methylation CROSSalive achieves an accuracy of 0.88 on the test set. The algorithm was also applied to the murine long non-coding RNA Xist (17900 nt, not present in the training) and shows a Pearson’s correlation of 0.45 with SHAPE-map data. CROSSalive webserver is freely accessible at the following page: http://service.tartaglialab.com/new_submission/crossalive


2020 ◽  
Vol 21 (13) ◽  
pp. 996-1008
Author(s):  
Mengli Wang ◽  
Qiuzheng Du ◽  
Lihua Zuo ◽  
Peng Xue ◽  
Chao Lan ◽  
...  

Background: As a new tumor therapy, targeted therapy is becoming a hot topic due to its high efficiency and low toxicity. Drug effects of targeted tumor drugs are closely related to pharmacokinetics, so it is important to understand their distribution and metabolism in vivo. Methods: A systematic review of the literature on the metabolism and distribution of targeted drugs over the past 20 years was conducted, and the pharmacokinetic parameters of approved targeted drugs were summarized in combination with the FDA's drug instructions. Targeting drugs are divided into two categories: small molecule inhibitors and monoclonal antibodies. Novel targeting drugs and their mechanisms of action, which have been developed in recent years, are summarized. The distribution and metabolic processes of each drug in the human body are reviewed. Results: In this review, we found that the distribution and metabolism of small molecule kinase inhibitors (TKI) and monoclonal antibodies (mAb) showed different characteristics based on the differences of action mechanism and molecular characteristics. TKI absorbed rapidly (Tmax ≈ 1-4 h) and distributed in large amounts (Vd > 100 L). It was mainly oxidized and reduced by cytochrome P450 CYP3A4. However, due to the large molecular diameter, mAb was distributed to tissues slowly, and the volume of distribution was usually very low (Vd < 10 L). It was mainly hydrolyzed and metabolized into peptides and amino acids by protease hydrolysis. In addition, some of the latest drugs are still in clinical trials, and the in vivo process still needs further study. Conclusion: According to the summary of the research progress of the existing targeting drugs, it is found that they have high specificity, but there are still deficiencies in drug resistance and safety. Therefore, the development of safer and more effective targeted drugs is the future research direction. Meanwhile, this study also provides a theoretical basis for clinical accurate drug delivery.


2019 ◽  
Vol 20 (12) ◽  
pp. 1227-1243
Author(s):  
Hina Qamar ◽  
Sumbul Rehman ◽  
D.K. Chauhan

Cancer is the second leading cause of morbidity and mortality worldwide. Although chemotherapy and radiotherapy enhance the survival rate of cancerous patients but they have several acute toxic effects. Therefore, there is a need to search for new anticancer agents having better efficacy and lesser side effects. In this regard, herbal treatment is found to be a safe method for treating and preventing cancer. Here, an attempt has been made to screen some less explored medicinal plants like Ammania baccifera, Asclepias curassavica, Azadarichta indica, Butea monosperma, Croton tiglium, Hedera nepalensis, Jatropha curcas, Momordica charantia, Moringa oleifera, Psidium guajava, etc. having potent anticancer activity with minimum cytotoxic value (IC50 >3μM) and lesser or negligible toxicity. They are rich in active phytochemicals with a wide range of drug targets. In this study, these medicinal plants were evaluated for dose-dependent cytotoxicological studies via in vitro MTT assay and in vivo tumor models along with some more plants which are reported to have IC50 value in the range of 0.019-0.528 mg/ml. The findings indicate that these plants inhibit tumor growth by their antiproliferative, pro-apoptotic, anti-metastatic and anti-angiogenic molecular targets. They are widely used because of their easy availability, affordable price and having no or sometimes minimal side effects. This review provides a baseline for the discovery of anticancer drugs from medicinal plants having minimum cytotoxic value with minimal side effects and establishment of their analogues for the welfare of mankind.


2018 ◽  
Vol 18 (6) ◽  
pp. 769-775 ◽  
Author(s):  
Dayun Yan ◽  
Jonathan H. Sherman ◽  
Michael Keidar

Background: Over the past five years, the cold atmospheric plasma-activated solutions (PAS) have shown their promissing application in cancer treatment. Similar as the common direct cold plasma treatment, PAS shows a selective anti-cancer capacity in vitro and in vivo. However, different from the direct cold atmospheric plasma (CAP) treatment, PAS can be stored for a long time and can be used without dependence on a CAP device. The research on PAS is gradually becoming a hot topic in plasma medicine. Objectives: In this review, we gave a concise but comprehensive summary on key topics about PAS including the development, current status, as well as the main conclusions about the anti-cancer mechanism achieved in past years. The approaches to make strong and stable PAS are also summarized.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Marco Passamonti ◽  
Marco Calderone ◽  
Manuel Delpero ◽  
Federico Plazzi

2021 ◽  
Vol 14 (7) ◽  
pp. 622
Author(s):  
Arne Krüger ◽  
Ana Paula de Jesus Santos ◽  
Vanessa de Sá ◽  
Henning Ulrich ◽  
Carsten Wrenger

Aptamers are single-stranded DNA or RNA molecules which are submitted to a process denominated SELEX. SELEX uses reiterative screening of a random oligonucleotide library to identify high-affinity binders to a chosen target, which may be a peptide, protein, or entire cells or viral particles. Aptamers can rival antibodies in target recognition, and benefit from their non-proteic nature, ease of modification, increased stability, and pharmacokinetic properties. This turns them into ideal candidates for diagnostic as well as therapeutic applications. Here, we review the recent accomplishments in the development of aptamers targeting emerging viral diseases, with emphasis on recent findings of aptamers binding to coronaviruses. We focus on aptamer development for diagnosis, including biosensors, in addition to aptamer modifications for stabilization in body fluids and tissue penetration. Such aptamers are aimed at in vivo diagnosis and treatment, such as quantification of viral load and blocking host cell invasion, virus assembly, or replication, respectively. Although there are currently no in vivo applications of aptamers in combating viral diseases, such strategies are promising for therapy development in the future.


Open Medicine ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 1003-1011
Author(s):  
Guanyu Zhang ◽  
Yiran Li ◽  
Jiasheng Xu ◽  
Zhenfang Xiong

AbstractOsteosarcoma (OS) is the most common primary malignant tumor of the skeletal system in the clinic. It mainly occurs in adolescent patients and the pathogenesis of the disease is very complicated. The distant metastasis may occur in the early stage, and the prognosis is poor. MicroRNAs (miRNAs) are non-coding RNAs of about 18–25 nt in length that are involved in post-transcriptional regulation of genes. miRNAs can regulate target gene expression by promoting the degradation of target mRNAs or inhibiting the translation process, thereby the proliferation of OS cells can be inhibited and the apoptosis can be promoted; in this way, miRNAs can affect the metabolism of OS cells and can also participate in the occurrence, invasion, metastasis, and recurrence of OS. Some miRNAs have already been found to be closely related to the prognosis of patients with OS. Unlike other reviews, this review summarizes the miRNA molecules closely related to the development, diagnosis, prognosis, and treatment of OS in recent years. The expression and influence of miRNA molecule on OS were discussed in detail, and the related research progress was summarized to provide a new research direction for early diagnosis and treatment of OS.


Sign in / Sign up

Export Citation Format

Share Document