high binding affinity
Recently Published Documents


TOTAL DOCUMENTS

255
(FIVE YEARS 126)

H-INDEX

29
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Eleni Sullivan

This study considered the preparation of a new DNA binding Ruthenium polypyridyl complex possessing an infrared active nitrile group. The binding abilities of a novel Ruthenium complex, [Ru(TMP)2DPPZ-10-CN], to various forms of DNA—both canonical and non-canonical—were examined by performing multiple DNA titrations. DNA is of great interest as it is the carrier of genetic information for all living things. Damage to DNA can have drastically detrimental effects, so the study of its structure and replication is of great importance. Two non-canonical structures that are important are the G-quadruplex and i-motif which form at the telomeric and regulatory regions of genes, respectively, and have the ability to block telomerase activity and influence transcription. The complex was synthesized by microwave irradiation and purified using a silica column and an ion exchange with Amberlite 402. Six titrations were, then, performed with salmon sperm dsDNA, guanine monophosphate (GMP), G4T4G4, human telomere G-quadruplex, i-motif C5T3, and i-motif C30. The complex was found to favor non-canonical structures, particularly the G-quadruplex structure, because of its high [bp]/[Ru] concentrations. The higher concentration of base pairs or structures per Ruthenium molecule indicated that the complex had a high binding affinity for that particular DNA structure. These results support the notion that Ruthenium metal complexes can be used for theragnostic purposes and can be used to target the telomeric region of genes where G-quadruplex structures can be found and influence transcription initiation and inhibit telomerase activity.


2022 ◽  
Author(s):  
Eleni Sullivan

This study considered the preparation of a new DNA binding Ruthenium polypyridyl complex possessing an infrared active nitrile group. The binding abilities of a novel Ruthenium complex, [Ru(TMP)2DPPZ-10-CN], to various forms of DNA—both canonical and non-canonical—were examined by performing multiple DNA titrations. DNA is of great interest as it is the carrier of genetic information for all living things. Damage to DNA can have drastically detrimental effects, so the study of its structure and replication is of great importance. Two non-canonical structures that are important are the G-quadruplex and i-motif which form at the telomeric and regulatory regions of genes, respectively, and have the ability to block telomerase activity and influence transcription. The complex was synthesized by microwave irradiation and purified using a silica column and an ion exchange with Amberlite 402. Six titrations were, then, performed with salmon sperm dsDNA, guanine monophosphate (GMP), G4T4G4, human telomere G-quadruplex, i-motif C5T3, and i-motif C30. The complex was found to favor non-canonical structures, particularly the G-quadruplex structure, because of its high [bp]/[Ru] concentrations. The higher concentration of base pairs or structures per Ruthenium molecule indicated that the complex had a high binding affinity for that particular DNA structure. These results support the notion that Ruthenium metal complexes can be used for theragnostic purposes and can be used to target the telomeric region of genes where G-quadruplex structures can be found and influence transcription initiation and inhibit telomerase activity.


Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 10
Author(s):  
Hien T. Ngoc Le ◽  
Sungbo Cho

The development of an electrochemical biosensor for the detection of phosphorylated-tau threonine 231 (p-tau231), a biomarker of Alzheimer’s disease (AD), has yet to be achieved. Therefore, in this study, we developed a simple, small size, cheap, and sensitive electrochemical biosensor based on an interdigitated wave-shaped electrode via an activated self-assembled monolayer to preserve a specific anti–p-tau231 antibody (IWE/SAM/EDC-NHS/anti–p-tau231). Detection of p-tau231 in human serum (HS) using the biosensor was undertaken using electrochemical impedance spectroscopy (EIS). The change in charge-transfer resistance (Rct) in the EIS analysis of the biosensor indicated the detection of p-tau231 in HS within a wide linear range of detection (10−4–101 ng mL−1), and a low limit of detection (140 pg mL−1). This lower limit is less than the detection level of p-tau231 in cerebrospinal fluid (CSF) (700 pg mL−1) of AD patients and the level of CSF p-tau231 of patients with mild cognitive impairment (501 pg mL−1), demonstrating the possibility of using the biosensor in detection of p-tau231 at early stage AD. A high binding affinity and low dissociation constant (Kd) between anti–p-tau231 and p-tau231 in HS was demonstrated by using a biosensor and Kd was 7.6 pM, demonstrating the high specific detection of p-tau231 by the biosensor. The good selectivity of the biosensor for the detection of p-tau231 with differential analytes was also examined in this study.


Author(s):  
G. Koteswara Reddy ◽  
V. Nikhil Reddy ◽  
S. Phavethra ◽  
A. Bhavani ◽  
A. J. Vineeth ◽  
...  

The objectives of the study were to examine the virtual screening of the compounds and sigma-covalent inhibition of SARS-CoV-2 RdRp (RNA-Dependent RNA-Polymerase), which is conserved and is an essential enzyme for RNA transcription and replication of this virus. In this study, we collected around 1225 similar compounds of Penciclovir and Acyclovir inhibitors from PubChem and predicted ADME (Adsorption, Distribution, Metabolism and Excretion) molecular descriptors using Swiss-ADME server. Virtually screened 24/1225 compounds based on drug-likeliness five rules (Lipinski, Ghose, Veber, Egan, and Muegge) and lead-likeliness properties. Further 10/24 compounds screened, based on high binding affinity and RMSD<3.5Å against RdRp structure using PyRx docking software. Furthermore, the molecular interactions of 10 compounds studied using Discovery studio software and finally screened five PubChem compounds 57201841, 135408972, 54552823, 135409422 and 467850, based on bioactivity score using Molinsipiration cheminformatics software. All these five compounds showed up anti-SARS CoV-2 activity, though further in-vitro studies are required.


2021 ◽  
Vol 118 (50) ◽  
pp. e2112942118
Author(s):  
Julián Valero ◽  
Laia Civit ◽  
Daniel M. Dupont ◽  
Denis Selnihhin ◽  
Line S. Reinert ◽  
...  

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has created an urgent need for new technologies to treat COVID-19. Here we report a 2′-fluoro protected RNA aptamer that binds with high affinity to the receptor binding domain (RBD) of SARS-CoV-2 spike protein, thereby preventing its interaction with the host receptor ACE2. A trimerized version of the RNA aptamer matching the three RBDs in each spike complex enhances binding affinity down to the low picomolar range. Binding mode and specificity for the aptamer–spike interaction is supported by biolayer interferometry, single-molecule fluorescence microscopy, and flow-induced dispersion analysis in vitro. Cell culture experiments using virus-like particles and live SARS-CoV-2 show that the aptamer and, to a larger extent, the trimeric aptamer can efficiently block viral infection at low concentration. Finally, the aptamer maintains its high binding affinity to spike from other circulating SARS-CoV-2 strains, suggesting that it could find widespread use for the detection and treatment of SARS-CoV-2 and emerging variants.


2021 ◽  
Author(s):  
Suresh Kumar ◽  
Thiviya S. Thambiraja ◽  
Kalimuthu Karuppanan ◽  
Gunasekaran Subramaniam

AbstractEmerging SARS-CoV-2 variants, especially those of concern, may have an impact on the virus’s transmissibility and pathogenicity, as well as diagnostic equipment performance and vaccine effectiveness. Even though the SARS-CoV-2 Delta variant (B.1.617.2) emerged during India’s second wave of infections, Delta variants have grown dominant internationally and are still evolving. On November 26, 2021, WHO identified the variant B.1.1.529 as a variant of concern, naming it Omicron, based on evidence that Omicron contains numerous mutations that may influence its behaviour. However, the mode of transmission and severity of the Omicron variant remains unknown. We used computational studies to examine the Delta and Omicron variants in this work and found that the Omicron variant had a higher affinity for human ACE2 than the Delta variant due to a significant number of mutations in the SARS-CoV-2 receptor binding domain, indicating a higher potential for transmission. Based on docking studies, the Q493R, N501Y, S371L, S373P, S375F, Q498R, and T478K mutations contribute significantly to high binding affinity with human ACE2. In comparison to the Delta variant, both the entire spike protein and the RBD in Omicron include a high proportion of hydrophobic amino acids such as leucine and phenylalanine. These amino acids are located within the protein’s core and are required for structural stability. Omicron has a higher percentage of alpha-helix structure than the Delta variant in both whole spike protein and RBD, indicating that it has a more stable structure. We observed a disorder-order transition in the Omicron variant between spike protein RBD regions 468-473, and it may be significant in the influence of disordered residues/regions on spike protein stability and binding to ACE2. A future study might investigate the epidemiological and biological consequences of the Omicron variant.


2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Ting Pan ◽  
Ran Chen ◽  
Xin He ◽  
Yaochang Yuan ◽  
Xiaohui Deng ◽  
...  

AbstractCOVID-19 is identified as a zoonotic disease caused by SARS-CoV-2, which also can cross-transmit to many animals but not mice. Genetic modifications of SARS-CoV-2 or mice enable the mice susceptible to viral infection. Although neither is the natural situation, they are currently utilized to establish mouse infection models. Here we report a direct contact transmission of SARS-CoV-2 variant B.1.351 in wild-type mice. The SARS-CoV-2 (B.1.351) replicated efficiently and induced significant pathological changes in lungs and tracheas, accompanied by elevated proinflammatory cytokines in the lungs and sera. Mechanistically, the receptor-binding domain (RBD) of SARS-CoV-2 (B.1.351) spike protein turned to a high binding affinity to mouse angiotensin-converting enzyme 2 (mACE2), allowing the mice highly susceptible to SARS-CoV-2 (B.1.351) infection. Our work suggests that SARS-CoV-2 (B.1.351) expands the host range and therefore increases its transmission route without adapted mutation. As the wild house mice live with human populations quite closely, this possible transmission route could be potentially risky. In addition, because SARS-CoV-2 (B.1.351) is one of the major epidemic strains and the mACE2 in laboratory-used mice is naturally expressed and regulated, the SARS-CoV-2 (B.1.351)/mice could be a much convenient animal model system to study COVID-19 pathogenesis and evaluate antiviral inhibitors and vaccines.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Joseph M. Slocik ◽  
Patrick B. Dennis ◽  
Zhifeng Kuang ◽  
Anthony Pelton ◽  
Rajesh R. Naik

AbstractAntibodies represent highly specific and high binding affinity biomolecular recognition elements for diagnostic assays, biosensors, and therapeutics, but are sensitive to denaturation and degradation. Consequently, the combination of existing in a hydrated state with a large and complex biomolecular structure results in loss of antibody-antigen binding, limited shelf-life, and decreased sensor response over time and under non-optimal conditions. The development and use of water-free protein liquids has led to stabilization of labile biomolecules, solvents for biotransformation reactions, and formation of new bio-composites with incompatible materials. Here, we exploit the polycationic nature of modified antibodies and their ability to form ion pairs for the conversion of primary Immunoglobulin G antibodies into stable protein liquids that retained more than 60% binding activity after repeated heating up to 125 °C, and demonstrate compatibility with thermoplastics.


2021 ◽  
Author(s):  
Carolyn Xie ◽  
Yu Shi ◽  
Chi Zhang

Neoantigens are important for cancer immunotherapies or cancer vaccine development, but identification of neoantigens is challenging. The high binding affinity between the mutated peptide and MHC (major histocompatibility complex) molecules of the patients is a necessary factor for a somatic mutation on the tumor genome to form a neoantigen. MHC epitope prediction tools can be used for the identification of neoantigens. This research investigates MHC epitope prediction by utilizing Tri-peptide similarity as features for the XGBoost classifier. This model was tested on experimentally validated cancer neoantigen peptides.


Coatings ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1384
Author(s):  
Rabi Ibrahim Saleh ◽  
Mirae Kim ◽  
Chaenyung Cha

Regenerated papers made from discarded natural sources, such as seaweeds or non-wood plants, are viewed as promising eco-friendly alternatives relative to conventional wood-based paper. However, due to its limited mechanical strength and higher water absorption than compared to traditional wood paper, it often results in premature structural disintegration. In order to overcome this limitation, this research introduces an efficient and comprehensive strategy of coating seaweed and plant papers with varying concentrations and molecular weights of chitosan. Increased concentration and molecular weight resulted in a greater amount of chitosan deposition, while the highest molecular weight also shows increased dissolution of soluble components of the paper. Since plants and seaweeds contain high anionic polysaccharide contents, the cationic chitosan shows high binding affinity towards paper. The resulting chitosan-coated papers demonstrate significant enhancements in water repellency and mechanical properties. In addition, the chitosan-coated papers also show significant bacterial inhibition effects due to the natural anti-microbial activity of chitosan.


Sign in / Sign up

Export Citation Format

Share Document