scholarly journals Nylon-Based Composite Gel Membrane Fabricated via Sequential Layer-By-Layer Electrospinning for Rechargeable Lithium Batteries with High Performance

Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1572 ◽  
Author(s):  
Sainan Qin ◽  
Yuqi Wang ◽  
Xu Wu ◽  
Xingpeng Zhang ◽  
Yusong Zhu ◽  
...  

With the raw materials of poly(vinylidene-co-hexafluoropropylene) (P(VDF-HFP)) and polyamide 6 (PA6, nylon 6), a sandwich-structured composite membrane, PA6/P(VDF-HFP)/PA6, is fabricated via sequential layer-by-layer electrospinning. The nylon-based composite exhibits high absorption to organic liquid electrolyte (270 wt%) owing to its high porosity (90.35%), good mechanical property (17.11 MPa), and outstanding shut-down behavior from approximately 145 to 230 °C. Moreover, the dimensional shrink of a wet PA6 porous membrane immersed into liquid electrolyte is cured due to the existence of the P(VDF-HFP) middle layer. After swelling by the LiPF6-based organic liquid electrolyte, the obtained PA6/P(VDF-HFP)/PA6-based gel polymer electrolytes (GPE) shows high ionic conductivity at room temperature (4.2 mS cm−1), a wide electrochemical stable window (4.8 V), and low activation energy for Li+ ion conduction (4.68 kJ mol−1). Benefiting from the precise porosity structure made of the interlaced electrospinning nanofibers and the superior physicochemical properties of the nylon-based composite GPE, the reversible Li+ ion dissolution/deposition behaviors between the GPE and Li anode are successfully realized with the Li/Li symmetrical cells (current density: 1.0 mA cm−2; areal capacity: 1.0 mAh cm−2) proceeding over 400 h at a polarization voltage of no more than 70 mV. Furthermore, the nylon-based composite GPE in assembled Li/LiFePO4 cells displays good electrochemical stability, high discharge capacity, good cycle durability, and high rate capability. This research provides a new strategy to fabricate gel polymer electrolytes via the electrospinning technique for rechargeable lithium batteries with good electrochemical performance, high security, and low cost.

RSC Advances ◽  
2015 ◽  
Vol 5 (72) ◽  
pp. 58655-58662 ◽  
Author(s):  
Xiaoli Tang ◽  
Qi Cao ◽  
Xianyou Wang ◽  
Xiuxiang Peng ◽  
Juan Zeng

Nanofibrous membranes based on poly(vinylidene fluoride) doped with thermoplastic polyurethane and polystyrene are prepared using an electrospinning technique and composite gel polymer electrolytes are obtained after activation in liquid electrolyte.


Nanomaterials ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 614
Author(s):  
Vo Pham Hoang Huy ◽  
Seongjoon So ◽  
Jaehyun Hur

Among the various types of polymer electrolytes, gel polymer electrolytes have been considered as promising electrolytes for high-performance lithium and non-lithium batteries. The introduction of inorganic fillers into the polymer-salt system of gel polymer electrolytes has emerged as an effective strategy to achieve high ionic conductivity and excellent interfacial contact with the electrode. In this review, the detailed roles of inorganic fillers in composite gel polymer electrolytes are presented based on their physical and electrochemical properties in lithium and non-lithium polymer batteries. First, we summarize the historical developments of gel polymer electrolytes. Then, a list of detailed fillers applied in gel polymer electrolytes is presented. Possible mechanisms of conductivity enhancement by the addition of inorganic fillers are discussed for each inorganic filler. Subsequently, inorganic filler/polymer composite electrolytes studied for use in various battery systems, including Li-, Na-, Mg-, and Zn-ion batteries, are discussed. Finally, the future perspectives and requirements of the current composite gel polymer electrolyte technologies are highlighted.


Sign in / Sign up

Export Citation Format

Share Document