scholarly journals Synthesis of Biobased and Hybrid Polyurethane Xerogels from Bacterial Polyester for Potential Biomedical Applications

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4256
Author(s):  
Sophie Wendels ◽  
Deyvid de Souza Porto ◽  
Luc Avérous

Organic–inorganic xerogel networks were synthesized from bacterial poly (3-hydroxybutyrate) (PHB) for potential biomedical applications. Since silane-based networks usually demonstrate increased biocompatibility and mechanical properties, siloxane groups have been added onto polyurethane (PU) architectures. In this work, a diol oligomer (oligoPHB-diol) was first prepared from bacterial poly(3-hydroxybutyrate) (PHB) with an environmentally friendly method. Then, hexamethylene diisocyanate or biobased dimeryl diisocyanate was used as diisocyanate to react with the short oligoPHB-diol for the synthesis of different NCO-terminated PU systems in a bulk process and without catalyst. Various PU systems containing increasing NCO/OH molar ratios were prepared. Siloxane precursors were then obtained after reaction of the NCO-terminated PUs with (3-aminopropyl)triethoxysilane, resulting in silane-terminated polymers. These structures were confirmed by different analytical techniques. Finally, four series of xerogels were prepared via a sol–gel process from the siloxane precursors, and their properties were evaluated depending on varying parameters such as the inorganic network crosslinking density. The final xerogels exhibited adequate properties in connection with biomedical applications such as a high in vitro degradation up to 15 wt% after 12 weeks.

Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 1927 ◽  
Author(s):  
Cai Wang ◽  
Jiapeng Xie ◽  
Xuan Xiao ◽  
Shaojun Chen ◽  
Yiping Wang

A nontoxic and biodegradable polyurethane was prepared, characterized, and evaluated for biomedical applications. Stretchable, biodegradable, and biocompatible polyurethanes (LPH) based on L-lysine diisocyanate (LDI) with poly(ethylene glycol) (PEG) and polyhydroxyalkanoates(PHA) of different molar ratios were synthesized. The chemical and physical characteristics of the LPH films are tunable, enabling the design of mechanically performance, hydrophilic, and biodegradable behavior. The LPH films have a Young’s modulus, tensile strength, and elongation at break in the range of 3.07–25.61 MPa, 1.01–9.49 MPa, and 102–998%, respectively. The LPH films demonstrate different responses to a change of temperature from 4 to 37 °C, with the swelling ratio for the same sample at equilibrium varying from 184% to 151%. In vitro degradation tests show the same LPH film has completely different degradation morphologies in pH of 3, 7.4, and 11 phosphate buffered solution (PBS). In vitro cell tests show feasibility that some of the LPH films are suitable for culturing rat bone marrow stem cells (rBMSCs), for future soft-tissue regeneration. The results demonstrate the feasibility of the LPH scaffolds for many biomedical applications.


2012 ◽  
Vol 258 (7) ◽  
pp. 2939-2943 ◽  
Author(s):  
Yi Zhang ◽  
Kuifeng Bai ◽  
Zhenya Fu ◽  
Caili Zhang ◽  
Huan Zhou ◽  
...  

2004 ◽  
Vol 449-452 ◽  
pp. 1121-1124 ◽  
Author(s):  
Do Won Seo ◽  
J.G. Kim ◽  
Yun Hae Kim ◽  
Chin Myung Whang

Bioactive ORMOSILS (organically modified silicate), PDMS-CaO-SiO2-P2O5 with five different P2O5 content (0, 0.01, 0.03, 0.06, 0.09 mol%) have successfully been synthesized by sol-gel process. The hybrids have been prepared with polydimethylsiloxane (PDMS), tetraethoxysilane (TEOS), calcium nitrate tetrahydrate [Ca(NO3)2 4H2O] and triethyl phosphate (TEP) as starting materials and subsequently soaked into the simulated body fluid (SBF) for different period of time and the bioactivity of hybrids was determined by examining the apatite formation on the surface of the specimen by FT-IR, Thin-Film X-ray Diffraction, and Scanning Electron Microscopy (SEM). All of the prepared samples with different P2O5 content showed in vitro bioactivity. It was observed that the increase in P2O5 content up to 0.03 mole % increases the apatite formation compared to P2O5- free hybrids. However, further increase in P2O5 concentration slows down the formation of the apatite layer most probably due to the decrease of pH of SBF by dissolution of a large amount of phosphate ions.


2007 ◽  
Vol 22 (5) ◽  
pp. 1182-1187
Author(s):  
Amita Verma ◽  
A.K. Srivastava ◽  
N. Karar ◽  
Harish Chander ◽  
S.A. Agnihotry

Nanostructured thermally treated xerogels have been synthesized using a sol-gel process involving cerium (Ce) chloride heptahydrate and titanium (Ti) propoxide mixed in different Ce:Ti molar ratios. Structural features of the xerogels have been correlated with their photoluminescence (PL) response. The crystallite sizes in the samples lie in the nanorange. The x-ray diffraction and transmission electron microscopy results have confirmed the coexistence of CeO2 and TiO2 nanocrystallites in these xerogels. In general, a decrease in the CeO2 crystallite size and an increase in the TiO2 crystallite size are observed in the xerogels as a function of Ti content. Scanning electron microscopy results have evidenced the evolution of ordered structure in the xerogels as a function of TiO2 content. Although both of the phases (CeO2 and TiO2) have exhibited PL in ultraviolet and visible regions, the major luminescence contribution has been made by the CeO2 phase. The largest sized CeO2 crystallites in 1:1 thermally treated xerogel have led to its highest PL response. PL emission in the xerogels is assigned to their nanocrystalline nature and oxygen vacancy-related defects.


2008 ◽  
Vol 47-50 ◽  
pp. 1319-1322
Author(s):  
Yang Zhao ◽  
Pei Yin ◽  
Zu Yong Wang ◽  
Lei Ren ◽  
Qi Qing Zhang

Novel hybrid biomaterial of gelatin-siloxane nanoparticles (GS NPs), with positive surface potential and lower cytotoxicity, was synthesized through a 2-step sol-gel process. The pDNA-GS NPs complex was formulated with high encapsulation efficiency, and exhibited and efficient transfection in vitro. We thus envision that the GS NPs material could serve as non-viral gene vectors for gene therapy.


Open Physics ◽  
2011 ◽  
Vol 9 (5) ◽  
Author(s):  
Francis Dejene ◽  
Abdub Ali ◽  
Hendrik Swart ◽  
Reinhardt Botha ◽  
Kittesa Roro ◽  
...  

AbstractMaterial property dependence on the OH−/Zn2+ molar ratio of the precursor was investigated by varying the amount of NaOH during synthesis of ZnO. It was necessary to control the water content and temperature of the mixture to ensure the reproducibility. It was observed that the structural properties, particle size, photoluminescence intensity and wavelength of maximum intensity were influenced by the molar ratio of the precursor. The XRD spectra for ZnO nanoparticles show the entire peaks corresponding to the various planes of wurtzite ZnO, indicating a single phase. UV measurements show the absorption that comes from the ZnO nanoparticles in visible region. The absorption edge of these ZnO nanoparticles are shifted to higher energies and the determined band gap energies are blue shifted as the OH−/Zn2 molar ration increases, due to the quantum confinement effects. The photoluminescence characterization of the ZnO nanostructures exhibited a broad emission band centred at green (600 nm) region for all molar ratios except for OH−/Zn2+ = 1.7 where a second blue emission around 468 nm was also observed. The photoluminescence properties of ZnO nanoparticles were largely determined by the size and surface properties of the nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document