scholarly journals Research on Wear Characteristics and Experiment on Internal Through-Passage Components for a New Type of Deep-Sea Mining Pump

Processes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 58
Author(s):  
Shunjun Hong ◽  
Xiaozhou Hu

The conveyor electric pump for deep-sea mining is a key piece of equipment in deep-sea mineral transportation systems, as its flow capacity and wear resistance affect the reliability of the entire system. In this study, aimed at solving problems such as mining pumps being prone to clogging and wear, which could lead to performance degradation, a mining pump with wide flow paths and high performance was designed, and hydraulic performance tests were conducted on the new pump. The test results obtained were in good agreement with the numerical simulation results. Based on the reliability of the performance test results, using computational fluid dynamics (CFD) methods, and taking the wear model into consideration, a wear analysis was conducted on the internal through-passage components of the pump under different solid-phase particle parameters and operating conditions, and the average wear rate on the surface of the predominant through-passage components was calculated. The results showed that the hydraulic performance of the newly designed pump met the design requirements, with different particle parameters and operating conditions causing different degrees of wear on the through-passage components. The wear test was carried out with a test pump, and the comparison between the test results and the numerical calculation results showed that the numerical calculation of the wear of the deep-sea mining pump was accurate.

2015 ◽  
Vol 119 (1219) ◽  
pp. 1123-1145 ◽  
Author(s):  
D.G. MacManus ◽  
M. Slaby

AbstractWhen an aero-engine is operating on the ground the formation of a potent inlet ground vortex can arise which has the ability to ingest foreign object debris. The ingestion of foreign objects can cause notable damage to engine components as well as overall performance degradation. The assessment of foreign object ingestion has been conducted using a combination of computational fluid dynamics, analytical modelling and an Euler-Lagrange uncoupled discrete phase particle tracking method. The flow fields for a full-scale aero-engine have been simulated for a range of ground clearances and intake velocity ratios under crosswind conditions. The sensitivity of the debris ingestion thresholds and characteristics to particle size and material density has been evaluated. The characteristics of the ingestion location within the intake are also considered for a range of operating conditions and particle parameters.


Author(s):  
Wirda Linda

This research is motivated by the low desire of students in writing travel reports. The lack of students' knowledge of the report concept, the lack of students' knowledge of the 5W + 1H report points of good and correct language, the lack of students' knowledge of the spatial, time and topic pattern and not yet reached KKM 75. The method used by the teacher has not been interesting, lecture method. The purpose of this study is to describe the skills of writing travel reports by using Round Club learning model which is viewed from the aspect of understanding the report concept, the use of 5W +1H report points, the spatial, time, and topic pattern.The population of this study is the students of class V Lessons Year 2017/2018 which amounted to 2 classes with the number 80. The sample of research as much as two classes taken by the sample of propotional.Class V.1 as experimental class and class V.2 as control class. The research instrument used is performance test. Provide an assessment by specifying the subject of the 5W + 1H report, as well as the spatial, time and topic pattern. Data were analyzed by 't' test by first testing normality, homogeneity, and hypothesis testing.The results showed that the average control class 68 with more than enough qualifications with standard deviation 16.96. 83 experimental class with good qualification and standard deviation of 15.42 and there is a significant influence on the result of writing skill of class V SDN 01 Nagari Bukik SikumpaSubdistrict, Lima Puluh Kota. This is evidenced by the average value of writing skills in the experiment class higher than the average value in the control class. Normality test results indicate that the two sample classes of  Lo  values in the control class -0.2141 are smaller than the normal 0.190 Lt distributed. Homogeneity test results that the variation of this study is homogeneous at a real level of 0.05, because Ftable 2.16 > Fhitung 1.21 and the results of data analysis then obtained = 2.78 > 1.70 t table, so H0 rejected and H1 accepted. It can be concluded that there is Influence. Using  Learning  Model of Student Group Writing  Skills Travel Report of students of class V SDN 01 Nagari Bukik Sikumpa Subdistrict, Kabupaten Lima Puluh Kota.KeyWords: model pembelajaran round club, menulis laporan perjalanan.


2021 ◽  
pp. 1-8
Author(s):  
Junta Iguchi ◽  
Minoru Matsunami ◽  
Tatsuya Hojo ◽  
Yoshihiko Fujisawa ◽  
Kenji Kuzuhara ◽  
...  

BACKGROUND: Few studies have investigated the variations in body composition and performance in Japanese collegiate American-football players. OBJECTIVE: To clarify what characterizes competitors at the highest levels – in the top division or on the starting lineup – we compared players’ body compositions and performance test results. METHODS: This study included 172 players. Each player’s body composition and performance (one-repetition maximum bench press, one-repetition maximum back squat, and vertical jump height) were measured; power was estimated from vertical jump height and body weight. Players were compared according to status (starter vs. non-starter), position (skill vs. linemen), and division (1 vs. 2). Regression analysis was performed to determine characteristics for being a starter. RESULTS: Players in higher divisions and who were starters were stronger and had more power, greater body size, and better performance test results. Players in skill positions were relatively stronger than those in linemen positions. Vertical jump height was a significant predictor of being a starter in Division 1. CONCLUSION: Power and vertical jump may be a deciding factor for playing as a starter or in a higher division.


Author(s):  
Shaosen Ma ◽  
Guangping Huang ◽  
Khaled Obaia ◽  
Soon Won Moon ◽  
Wei Victor Liu

The objective of this study is to investigate the hysteresis loss of ultra-large off-the-road (OTR) tire rubber compounds based on typical operating conditions at mine sites. Cyclic tensile tests were conducted on tread and sidewall compounds at six strain levels ranging from 10% to 100%, eight strain rates from 10% to 500% s−1 and 14 rubber temperatures from −30°C to 100°C. The test results showed that a large strain level (e.g. 100%) increased the hysteresis loss of tire rubber compounds considerably. Hysteresis loss of tire rubber compounds increased with a rise of strain rates, and the increasing rates became greater at large strain levels (e.g. 100%). Moreover, a rise of rubber temperatures caused a decrease in hysteresis loss; however, the decrease became less significant when the rubber temperatures were above 10°C. Compared with tread compounds, sidewall compounds showed greater hysteresis loss values and more rapid increases in hysteresis loss with the rising strain rate.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 759
Author(s):  
Andrea Mariscotti

Accurate and comprehensive methods for the assessment of radiated electromagnetic emissions in modern electric transportation systems are a necessity. The characteristics and susceptibility of modern victim signaling and communication radio services, operating within and outside the right-of-way, require an update of the measurement methods integrating or replacing the swept frequency technique with time domain approaches. Applicable standards are the EN 50121 (equivalent to the IEC 62236) and Urban Mass Transport Association (UMTA) with additional specifications from project contracts. This work discusses the standardized methods and settings, and the representative operating conditions, highlighting areas where improvements are possible and opportune (statistical characterization of measurement results, identification and distinction of emissions and line resonances, and narrowband and broadband phenomena). In particular for the Electromagnetic Compatibility (EMC) assessment with new Digital Communication Systems, the characterization of time distribution of spectral properties is discussed, e.g., by means of Amplitude Probability Distribution and including time distribution information. The problem of determination of site and setup uncertainty and repeatability is also discussed, observing on one hand the lack of clear indications in standards and, on the other hand, the non-ideality and intrinsic variability of measurement conditions (e.g., rolling stock operating conditions, synchronization issues, and electric arc intermittence).


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2042
Author(s):  
Wojciech Kacalak ◽  
Igor Maciejewski ◽  
Dariusz Lipiński ◽  
Błażej Bałasz

A simulation model and the results of experimental tests of a vibration generator in applications for the hot-dip galvanizing process are presented. The parameters of the work of the asynchronous motor forcing the system vibrations were determined, as well as the degree of unbalance enabling the vibrations of galvanized elements weighing up to 500 kg to be forced. Simulation and experimental tests of the designed and then constructed vibration generator were carried out at different intensities of the unbalanced rotating mass of the motor. Based on the obtained test results, the generator operating conditions were determined at which the highest values of the amplitude of vibrations transmitted through the suspension system to the galvanized elements were obtained.


Author(s):  
Eugen-Dan Cristea ◽  
Pierangelo Conti

Three dimensional, time dependent Euler-Euler simulation approach for numerical calculation of multiphase strongly swirling turbulent gas-heavy laden particulate flow in large industrial collection cyclones, positioned vertically, in staggered downward cascade arrangement has been performed. The multiphase flow was featured high mass loading. This paper specifically addresses a CFD modeling of a “suspension preheater”, typical equipment for dry process cement kiln. Big sized cyclone separator is a key component of this device. The simulation case study was developed in the frame of the commercial general-purpose code ANSYS-Fluent R13. In cyclone separators the swirling gas motion induces a centrifugal force on the solid particulate phase which is the driving force behind the separation process. The turbulence disperses the solid particulates and enhances the probability that particles are discharged, as reject. Both phenomena are related to solid phase particle size distribution (PSD) and flow pattern into the collection cyclones. The multiphase turbulence was modeled using the RSM Mixture Turbulence Model. The simulation results were validated against industrial measurements carried out on an industrial suspension preheater, in the frame of heat and mass balance of cement kiln energy audit. The numerical simulation results were found in reasonable agreement with the collected industrial measurements. This CFD simulation represents a powerful engineering tool on behalf of the cement process engineer either for new cutting-edge design or for performance verification of an existing plant.


1982 ◽  
Vol 104 (2) ◽  
pp. 143-149 ◽  
Author(s):  
W. F. Z. Lee ◽  
D. C. Blakeslee ◽  
R. V. White

A new metering concept of a self-correcting and self-checking turbine meter is described in which a sensor rotor downstream from the main rotor senses and responds to changes in the exit angle of the fluid leaving the main rotor. The output from the sensor rotor is then electronically combined with the output from the main rotor to produce an adjusted output which automatically and continuously corrects to original meter calibration accuracy. This takes place despite changes in retarding torques, bearing wear and/or upstream conditions occurring in field operations over those which were experienced during calibration. The ratio of the sensor rotor output to the main rotor output at operating conditions is also automatically and continuously compared with that at calibration conditions. This provides an indication of the amount of accuracy deviation from initial calibration that is being corrected by the sensor rotor. This concept is studied theoretically and experimentally. Both the theory and test results (laboratory and field) confirm the concept’s validity and practicability.


1997 ◽  
Vol 119 (1) ◽  
pp. 132-141 ◽  
Author(s):  
J. T. Sawicki ◽  
R. J. Capaldi ◽  
M. L. Adams

This paper describes an experimental and theoretical investigation of a four-pocket, oil-fed, orifice-compensated hydrostatic bearing including the hybrid effects of journal rotation. The test apparatus incorporates a double-spool-shaft spindle which permits independent control over the journal spin speed and the frequency of an adjustable-magnitude circular orbit, for both forward and backward whirling. This configuration yields data that enables determination of the full linear anisotropic rotordynamic model. The dynamic force measurements were made simultaneously with two independent systems, one with piezoelectric load cells and the other with strain gage load cells. Theoretical predictions are made for the same configuration and operating conditions as the test matrix using a finite-difference solver of Reynolds lubrication equation. The computational results agree well with test results, theoretical predictions of stiffness and damping coefficients are typically within thirty percent of the experimental results.


Sign in / Sign up

Export Citation Format

Share Document