Biomass-Derived Carbon/Sulfur Composite Cathodes with Multiwalled Carbon Nanotube Coatings for Li-S Batteries
Lithium sulfur (Li-S) batteries stand out among many new batteries for their high energy density. However, the intermediate charge–discharge product dissolves easily into the electrolyte to produce a shuttle effect, which is a key factor limiting the rapid development of Li-S batteries. Among the various materials used to solve the challenges related to pure sulfur cathodes, biomass derived carbon materials are getting wider research attention. In this work, we report on the fabrication of cathode materials for Li-S batteries based on composites of sulfur and biomass-derived porous ramie carbon (RC), which are coated with multiwalled carbon nanotubes (MWCNTs). RC can not only adsorb polysulfide in its pores, but also provide conductive channels. At the same time, the MWCNTs coating further reduces the dissolution of polysulfides into the electrolyte and weakens the shuttle effect. The sulfur loading rate of RC is 66.3 wt.%. As a result, the initial discharge capacity of the battery is 1325.6 mAh·g−1 at 0.1 C long cycle, and it can still maintain 812.5 mAh·g−1 after 500 cycles. This work proposes an effective double protection strategy for the development of advanced Li-S batteries.