scholarly journals Biomass-Derived Carbon/Sulfur Composite Cathodes with Multiwalled Carbon Nanotube Coatings for Li-S Batteries

Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 136
Author(s):  
Lina Han ◽  
Zemin Li ◽  
Yang Feng ◽  
Lijiang Wang ◽  
Bowen Li ◽  
...  

Lithium sulfur (Li-S) batteries stand out among many new batteries for their high energy density. However, the intermediate charge–discharge product dissolves easily into the electrolyte to produce a shuttle effect, which is a key factor limiting the rapid development of Li-S batteries. Among the various materials used to solve the challenges related to pure sulfur cathodes, biomass derived carbon materials are getting wider research attention. In this work, we report on the fabrication of cathode materials for Li-S batteries based on composites of sulfur and biomass-derived porous ramie carbon (RC), which are coated with multiwalled carbon nanotubes (MWCNTs). RC can not only adsorb polysulfide in its pores, but also provide conductive channels. At the same time, the MWCNTs coating further reduces the dissolution of polysulfides into the electrolyte and weakens the shuttle effect. The sulfur loading rate of RC is 66.3 wt.%. As a result, the initial discharge capacity of the battery is 1325.6 mAh·g−1 at 0.1 C long cycle, and it can still maintain 812.5 mAh·g−1 after 500 cycles. This work proposes an effective double protection strategy for the development of advanced Li-S batteries.

NANO ◽  
2020 ◽  
Vol 15 (05) ◽  
pp. 2030002
Author(s):  
Xiang-Qian Zhang ◽  
Chen Liu ◽  
Yue Gao ◽  
Jin-Mei Zhang ◽  
Ya-Qin Wang

Lithium-sulfur (Li-S) battery is one of the most promising secondary batteries for its high energy density, high natural abundance and environment friendly nature of sulfur. However, the commercial application of Li-S battery faces some technical obstacles, such as low cycling stability resulted from the shuttle effect of polysulfides, low electrical conductivity of sulfur and volume expansion during charge/discharge process. Furthermore, due to the flammability of organic solvents in liquid electrolytes, the continuous formation of lithium dendrites and the low ignition temperature of carbon–sulfur mixtures, safety of Li-S batteries has become another critical issue to be solved. In recent years, many different strategies have been put forward to improve the electrochemical performance and safety of Li-S batteries, containing the development of carbon/sulfur composite cathodes, design of flame retardant electrolytes and protection of negative electrodes. In this review, the recent progress of sulfur/carbon composite cathode materials for Li-S battery is first introduced. Then the evaluation methods and latest development of high-safety electrolytes toward advanced Li-S batteries are summarized. Finally, the development trends of Li-S battery are forecasted.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 408
Author(s):  
Jae-Woo Park ◽  
Hyun Jin Hwang ◽  
Hui-Ju Kang ◽  
Gazi A. K. M. Rafiqul Bari ◽  
Tae-Gyu Lee ◽  
...  

The lithium-polysulfide (LiPS) dissolution from the cathode to the organic electrolyte is the main challenge for high-energy-density lithium-sulfur batteries (LSBs). Herein, we present a multi-functional porous carbon, melamine cyanurate (MCA)-glucose-derived carbon (MGC), with superior porosity, electrical conductivity, and polysulfide affinity as an efficient sulfur support to mitigate the shuttle effect. MGC is prepared via a reactive templating approach, wherein the organic MCA crystals are utilized as the pore-/micro-structure-directing agent and nitrogen source. The homogeneous coating of spherical MCA crystal particles with glucose followed by carbonization at 600 °C leads to the formation of hierarchical porous hollow carbon spheres with abundant pyridinic N-functional groups without losing their microstructural ordering. Moreover, MGC enables facile penetration and intensive anchoring of LiPS, especially under high loading sulfur conditions. Consequently, the MGC cathode exhibited a high areal capacity of 5.79 mAh cm−2 at 1 mA cm−2 and high loading sulfur of 6.0 mg cm−2 with a minor capacity decay rate of 0.18% per cycle for 100 cycles.


Nanoscale ◽  
2021 ◽  
Author(s):  
Fanglei Zeng ◽  
Fang Wang ◽  
Ning Li ◽  
Ke Meng Song ◽  
Shi-Ye Chang ◽  
...  

Li-S battery is considered as one of the most promising battery system because of its large theoretical capacity and high energy density. However, the “shuttle effect” of soluble polysulfides and...


2018 ◽  
Vol 5 (23) ◽  
pp. 1801342 ◽  
Author(s):  
Sanghyeon Kim ◽  
Xiangming Li ◽  
Lingzi Sang ◽  
Young Soo Yun ◽  
Ralph G. Nuzzo ◽  
...  

1996 ◽  
Vol 105 (1) ◽  
pp. 85-90 ◽  
Author(s):  
Noboru Oyama ◽  
Tetsu Tatsuma ◽  
Tadashi Sotomura

2018 ◽  
Vol 6 (17) ◽  
pp. 7375-7381 ◽  
Author(s):  
Zhibin Cheng ◽  
Hui Pan ◽  
Zhubing Xiao ◽  
Dejian Chen ◽  
Xiaoju Li ◽  
...  

A new lithium polysulfide (PS) trapping strategy based on electrostatic attraction between imidazolium groups and PSs has been demonstrated. Simple introduction of main-chain imidazolium-based ionic polymers into sulfur cathodes results in effective suppression of the PS shuttle effect, thus significantly improving cycling stability of lithium–sulfur batteries.


2018 ◽  
Vol 11 (06) ◽  
pp. 1840007 ◽  
Author(s):  
Qian Wang ◽  
Chengkai Yang ◽  
Hui Tang ◽  
Kai Wu ◽  
Henghui Zhou

Lithium-sulfur batteries are considered as a promising candidate for the next-generation high energy density storage devices. However, they are still hindered by serious capacity decay on cycling caused by the dissolution of redox intermediates. Here, we designed a unique structure with polypyrrole (ppy) inserting into the graphene oxide (GO) sheet for accommodating sulfur. Such a sulfur host not only exhibits a good electronic and ionic conductivity, but also can suppress polysulfide dissolution effectively. With this advanced design, the composite cathode showed a high specific capacity of 548.4[Formula: see text]mA[Formula: see text]h[Formula: see text]g[Formula: see text] at 5.0 C. A stable Coulombic efficiency of [Formula: see text]99.5% and a capacity decay rate as low as 0.089% per cycle along with 300 cycles at 1.0 C were achieved for composite cathodes with 78[Formula: see text]wt.% of S. Besides, the interaction mechanism between PPy and lithium polysulfides (LPS) was investigated by density-functional theory (DFT), suggesting that only the polymerization of N atoms can bind strongly to Li ions of LPS rather than single N atoms. The 3D structure GO-PPy host with high conductivity and excellent trapping ability to LPS offered a viable strategy to design high-performance cathodes for Li–S batteries.


2018 ◽  
Vol 4 (4) ◽  
pp. 53 ◽  
Author(s):  
Yang Liu ◽  
Jiareng Chen ◽  
Bin Cui ◽  
Pengfei Yin ◽  
Chao Zhang

The synthesis and application of biomass-derived carbon in energy storage have drawn increasing research attention due to the ease of fabrication, cost-effectiveness, and sustainability of the meso/microporous carbon produced from various biological precursors, including plants, fruits, microorganisms, and animals. Compared to the artificial nanostructured carbons, such as fullerene, carbon nanotube and graphene, the biomass-derived carbons may obtain superior capacitance, rate performance and stability in supercapacitor applications ascribing to their intrinsic nanoporous and hierarchical structures. However, challenges remain in processing techniques to obtain biomass-derived carbons with high carbon yield, high energy density, and controllable graphitic microstructures, which may require a clear understanding over the chemical and elemental compositions, and the intrinsic microstructural characteristics of the biological precursors. Herein we present comprehensive analyses over the impacts of the chemical and elemental compositions of the precursors on the carbon yield of the biomass, as well as the mechanism of chemical activation on the nanoporous structure development of the biomass-derived carbons. The structure–property relationship and functional performance of various biomass-derived carbons for supercapacitor applications are also discussed in detail and compared. Finally, useful insights are also provided for the improvements of biomass-derived carbons in supercapacitor applications.


Sign in / Sign up

Export Citation Format

Share Document