scholarly journals Clinical Discernment, Bone Marrow, and Molecular Diagnostics Are Equally Important to Solve the Phenotypic Mimicry among Subtypes of Myeloproliferative Neoplasms

Reports ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 27
Author(s):  
Susann Schulze ◽  
Nadia Jaekel ◽  
Christin Le Hoa Naumann ◽  
Anja Haak ◽  
Marcus Bauer ◽  
...  

The 2016 WHO classification integrates clinical, bone marrow (BM)-morphology, and molecular features to define disease entities. This together with the advancements in molecular detection and standardization of BM features enable an accurate diagnosis of myeloproliferative neoplasms (MPN) in the majority of patients. Diagnostic challenges remain due to phenotypic mimicry of MPN, failing specificity of BM-morphology, and the fact that phenotype-driver mutations, such as JAK2V617F, are not exclusive to a particular MPN, and their absence does not preclude any of these. We present a series of cases to illustrate themes to be considered in complex cases of MPN, such as triple-negative (TN)-MPN or MPN-unclassifiable (MPN-U). Eleven patients labelled as TN-MPN or MPN-U were included. Serum tryptase and NGS were part of a systematic/sequential multidisciplinary evaluation. Results were clustered into four categories based on diagnostic entities and/or how these diagnoses were made: (A) With expanding molecular techniques, BCR-ABL1 and karyotyping should not be missed; (B) systemic mastocytosis is underdiagnosed and often missed; (C) benign non-clonal disorders could mimic MPN; and (D) NGS could prove clonality in some “TN”-MPN cases. The prognostic/therapeutic consequences of an accurate diagnosis are immense. In TN-MPN or MPN-U cases, a multidisciplinary re-evaluation integrating molecular results, BM-morphology, and clinical judgment is crucial.

2014 ◽  
Vol 155 (52) ◽  
pp. 2074-2081 ◽  
Author(s):  
Tünde Krähling ◽  
Katalin Balassa ◽  
Nóra Meggyesi ◽  
András Bors ◽  
Judit Csomor ◽  
...  

Introduction: Mutations in Janus kinase 2, calreticulin and thrombopoietin receptor genes have been identified in the genetic background of Philadelphia chromosome negative, “classic” myeloproliferative neoplasms. Aim: The aim of the authors was to identify driver mutations in a large myeloproliferative cohort of 949 patients. Method: A complex array of molecular techniques (qualitative and quantitative allele-specific polymerase chain reactions, fragment analyzes, high resolution melting and Sanger sequencing) was applied. Results: All 354 patients with polycythemia vera carried Janus kinase 2 mutations (V617F 98.6%, exon 12: 1.4%). In essential thrombocythemia (n = 468), the frequency of V617F was 61.3% (n = 287), that of calreticulin 25.2% (n = 118), and that of thrombopoietin receptor mutations 2.1% (n = 10), while 11.3% (n = 53) were triple-negative. Similar distribution was observed in primary myelofibrosis (n = 127): 58.3% (n = 74) V617F, 23.6% (n = 30) calreticulin, 6.3% (n = 8) thrombopoietin receptor mutation positive and 11.8% (n = 15) triple-negative. Conclusions: The recent discovery of calreticulin gene mutations led to definite molecular diagnostics in around 90% of clonal myeloproliferative cases. Orv. Hetil., 2014, 155(52), 2074–2081.


Blood ◽  
2014 ◽  
Vol 124 (9) ◽  
pp. 1513-1521 ◽  
Author(s):  
Luca Malcovati ◽  
Elli Papaemmanuil ◽  
Ilaria Ambaglio ◽  
Chiara Elena ◽  
Anna Gallì ◽  
...  

Key Points Different driver mutations have distinct effects on phenotype of myelodysplastic syndromes (MDS) and myelodysplastic/myeloproliferative neoplasms (MDS/MPN). Accounting for driver mutations may allow a classification of these disorders that is considerably relevant for clinical decision-making.


2020 ◽  
Vol 2020 ◽  
pp. 1-4
Author(s):  
Stephen E. Langabeer ◽  
Lisa Lee Tokar ◽  
Laura Kearney ◽  
Cathal O’Brien ◽  
Kowshika Thavarajah ◽  
...  

Acquired, activating mutations of MPL W515 are recognised driver mutations of the myeloproliferative neoplasms (MPN), namely, essential thrombocythemia and primary myelofibrosis. The most common mutation at this codon is W515L with several other mutations also described at a lower frequency. Of these less common mutations, MPL W515S has only been reported sporadically with limited information on clinicopathological associations. We describe the case of an elderly man with persistent thrombocytosis presenting with an ischemic cerebral event. Bone marrow biopsy showed evidence of prefibrotic myelofibrosis with targeted sequencing demonstrating the presence of the rare MPL W515S mutation. Thrombolytic and cytoreductive therapies resulted in a favorable outcome and follow-up. This case provides additional, necessary, and phenotypic data for the rare MPN-associated MPL W515S mutation.


Hematology ◽  
2015 ◽  
Vol 2015 (1) ◽  
pp. 349-354 ◽  
Author(s):  
Eric Padron

Abstract The myelodysplastic/myeloproliferative neoplasms (MDS/MPNs) lie at the interphase of phenotypically opposing bone marrow malignancies. They are characterized by concomitant features of bone marrow failure and myeloproliferation and are generally associated with a poor prognosis. Although much is unknown with respect to the clinical course and molecular biology of MDS/MPNs, emerging research is beginning to uncover the key defining characteristics of this designation. In this review, we will discuss the features of MDS/MPN diseases that unify there clinical and molecular course and those that define distinct disease entities. We will discuss advances in genetics and MDS/MPN modeling, as well as translational discoveries that are anticipated to inform the diagnosis, prognostication, and treatment of MDS/MPNs in the near future.


Cancers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 3528
Author(s):  
Dominik Nann ◽  
Falko Fend

The diagnosis of a myeloid neoplasm relies on a combination of clinical, morphological, immunophenotypic and genetic features, and an integrated, multimodality approach is needed for precise classification. The basic diagnostics of myeloid neoplasms still rely on cell counts and morphology of peripheral blood and bone marrow aspirate, flow cytometry, cytogenetics and bone marrow trephine biopsy, but particularly in the setting of Ph− myeloproliferative neoplasms (MPN), the trephine biopsy has a crucial role. Nowadays, molecular studies are of great importance in confirming or refining a diagnosis and providing prognostic information. All myeloid neoplasms of chronic evolution included in this review, nowadays feature the presence or absence of specific genetic markers in their diagnostic criteria according to the current WHO classification, underlining the importance of molecular studies. Crucial differential diagnoses of Ph− MPN are the category of myeloid/lymphoid neoplasms with eosinophilia and gene rearrangement of PDGFRA, PDGFRB or FGFR1, or with PCM1-JAK2, and myelodysplastic/myeloproliferative neoplasms (MDS/MPN). This review focuses on morphological, immunophenotypical and molecular features of BCR-ABL1-negative MPN and their differential diagnoses. Furthermore, areas of difficulties and open questions in their classification are addressed, and the persistent role of morphology in the area of molecular medicine is discussed.


2021 ◽  
Vol 11 ◽  
Author(s):  
Daniele Cattaneo ◽  
Giorgio Alberto Croci ◽  
Cristina Bucelli ◽  
Silvia Tabano ◽  
Marta Giulia Cannone ◽  
...  

Lack of demonstrable mutations affecting JAK2, CALR, or MPL driver genes within the spectrum of BCR-ABL1-negative myeloproliferative neoplasms (MPNs) is currently referred to as a triple-negative genotype, which is found in about 10% of patients with essential thrombocythemia (ET) and 5–10% of those with primary myelofibrosis (PMF). Very few papers are presently available on triple-negative ET, which is basically described as an indolent disease, differently from triple-negative PMF, which is an aggressive myeloid neoplasm, with a significantly higher risk of leukemic evolution. The aim of the present study was to evaluate the bone marrow morphology and the clinical-laboratory parameters of triple-negative ET patients, as well as to determine their molecular profile using next-generation sequencing (NGS) to identify any potential clonal biomarkers. We evaluated a single-center series of 40 triple-negative ET patients, diagnosed according to the 2017 WHO classification criteria and regularly followed up at the Hematology Unit of our Institution, between January 1983 and January 2019. In all patients, NGS was performed using the Illumina Ampliseq Myeloid Panel; morphological and immunohistochemical features of the bone marrow trephine biopsies were also thoroughly reviewed. Nucleotide variants were detected in 35 out of 40 patients. In detail, 29 subjects harbored one or two variants and six cases showed three or more concomitant nucleotide changes. The most frequent sequence variants involved the TET2 gene (55.0%), followed by KIT (27.5%). Histologically, most of the cases displayed a classical ET morphology. Interestingly, prevalent megakaryocytes morphology was more frequently polymorphic with a mixture of giant megakaryocytes with hyperlobulated nuclei, normal and small sized maturing elements, and naked nuclei. Finally, in five cases a mild degree of reticulin fibrosis (MF-1) was evident together with an increase in the micro-vessel density. By means of NGS we were able to identify nucleotide variants in most cases, thus we suggest that a sizeable proportion of triple-negative ET patients do have a clonal disease. In analogy with driver genes-mutated MPNs, these observations may prevent issues arising concerning triple-negative ET treatment, especially when a cytoreductive therapy may be warranted.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5496-5496
Author(s):  
Stephen T. Oh ◽  
Christopher A. Miller ◽  
Yevgeniy Gindin ◽  
Taylor M. Brost ◽  
Jason Chan ◽  
...  

Abstract A 77 year-old man initially presented in July 2013 with anemia, splenomegaly, and constitutional symptoms. A bone marrow biopsy revealed a hypercellular marrow with megakaryocytic hyperplasia and atypia and mild reticulin fibrosis, consistent with a diagnosis of primary myelofibrosis (PMF). Cytogenetics revealed a normal karyotype. JAK2 V617F testing was negative. Initiation of treatment with the JAK inhibitor ruxolitinib led to marked symptomatic improvement. The patient was then enrolled in a Phase 2 study with the anti-lysyl oxidase-like-2 (LOXL2) monoclonal antibody simtuzumab, administered via IV infusion every two weeks (while continuing ruxolitinib). He tolerated the simtuzumab infusions well initially, but with the 11th and 12th infusions experienced rigors, hypotension, and hypoxia. This occurred ~8 months after his initial PMF diagnosis. A repeat bone marrow biopsy revealed large aggregates of mast cells comprising 30-40% of the marrow cellularity (with 16% mast cells enumerated on the aspirate). A subset of the mast cells exhibited spindled morphology, and CD25 co-expression was demonstrated by flow cytometry in a subset of CD117-positive cells. Testing for the KITD816V mutation was positive. Tryptase levels were significantly elevated (375 ng/mL). These findings were consistent with a diagnosis of aggressive systemic mastocytosis with an associated hematologic non-mast cell lineage disorder (ASM-AHNMD). Compassionate-use approval for the KIT inhibitor midostaurin was obtained, and treatment with midostaurin (in addition to continuation of ruxolitinib) was initiated. The patient initially reported symptomatic improvement with midostaurin treatment, but after several months his symptoms began to worsen, with a corresponding increase in tryptase (875 ng/mL). A repeat bone marrow biopsy revealed overt evolution to mast cell leukemia (MCL) with > 90% mast cell involvement. Based on the presence of an IDH2mutation identified on a clinical next-generation sequencing assay, the patient was evaluated for a clinical trial with the mutant IDH2 inhibitor AG-221. Unfortunately, the patient decompensated and expired before he could enroll in the study. To identify contributing driver mutations and to delineate clonal hierarchy associated with disease initiation and progression in this unique case of PMF with concomitant ASM, exome sequencing was performed on serial samples obtained at the following disease stages:PMF diagnosis (pre-ruxolitinib) (Day 0)PMF on ruxolitinib (before ASM diagnosis) (Day 181)ASM diagnosis (post-anti-LOXL2 antibody, pre-midostaurin) (Day 394)Progression to MCL (on midostaurin) (Day 519)Matched skin (normal) sample Likely driver mutations in IDH2 and SRSF2 were identified at ~40-50% variant allele frequency (VAF) in all samples and were therefore likely present in the founding clone. The KIT D816V mutation was found at 23% VAF at Day 0, then ~40% VAF in all other samples, suggesting it was present in a daughter subclone of the IDH2/SRSF2-containing clone that became dominant over time with disease progression. These findings also suggest that targeting KIT with midostaurin would be unlikely to eradicate the founding clone. Rather, selective targeting of IDH2 and/or SRSF2 could potentially ameliorate both diseases (PMF and ASM/MCL). To provide pre-clinical evidence of the potential utility of targeting IDH2, peripheral blood mononuclear cells obtained at the time of ASM diagnosis were plated in liquid culture in the presence or absence of the mutant IDH2 inhibitor AGI-6780. After 14 days in culture, the differentiation status of the cultured cells was examined by mass cytometry (CyTOF). Treatment with AGI-6780 resulted in a marked enhancement of myeloid differentiation (denoted by CD15 and CD66b expression) along with a corresponding decrease in CD34+ progenitor cells. These effects were not seen in cells cultured in the absence of AGI-6780. These results are consistent with prior studies in acute myeloid leukemia indicating that the beneficial effects of mutant IDH2 inhibition are likely related to inducing differentiation of primitive cells. In summary, this study highlights the capacity of serial genomic analysis to define the clonal architecture that drives disease initiation and evolution, and to distinguish founding vs subclonal mutations to identify the most promising targets for therapeutic intervention. Disclosures Oh: Janssen: Research Funding; CTI: Research Funding; Gilead: Membership on an entity's Board of Directors or advisory committees, Research Funding; Incyte Corporation: Membership on an entity's Board of Directors or advisory committees, Research Funding.


2020 ◽  
Vol 14 (02) ◽  
pp. 91-109
Author(s):  
Roxana Manaila ◽  
Vlad Moisoiu ◽  
Erik Knutsen ◽  
Mihnea P. Dragomir ◽  
George A. Calin

Primary myelofibrosis (PMF) is a pluripotent hematopoietic stem cell-derived malignancy, included in the heterogeneous group of myeloproliferative neoplasms (MPNs). PMF diagnosis is based on a composite assessment of clinical and laboratory data. The three major diagnostic criteria are: screening for driver mutations, exclusion of other conditions that can cause myelofibrosis, and bone marrow biopsy displaying megakaryocyte changes and fibrosis. PMF treatment options are only partially disease-modifying and consist mainly of symptom control. Recently, a new targeted therapy was introduced for PMF patients, JAK-STAT inhibitors (i.e. ruxolitinib). However, specific subgroups of patients do not benefit from the JAK-STAT inhibitors: (1) those who are carrying JAK2 mutations, but ruxolitinib does not reduce the spleen size; (2) triple negative patients (no JAK2, CALR, or MPL mutations); and (3) those who discontinue JAK-STAT therapy because of side effects. These subgroups are in need of new therapeutic approaches. Mature microRNAs (miRNAs) range from 16 to 28 nucleotides (nt) in length and regulate specific messenger RNAs at the post-transcriptional level. Numerous in vitro and in vivo studies have reported specific miRNAs, as well as complex miRNA networks, to be dysregulated in PMF. Several of these miRNAs were shown to be implicated in essential events of PMF pathophysiology: increase of bone marrow fibrosis, progression to acute myeloid leukemia, resistance to JAK-STAT inhibitors, and activation of differentiation of hematopoietic stem/progenitor cells into megakaryocytes. Hence, we propose miRNAs as a potential minimally invasive diagnostic tool for PMF and as therapeutic targets that could address the unmet medical needs of these patients.


Cancers ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 5605
Author(s):  
Magdalena M. Brune ◽  
Achim Rau ◽  
Mathis Overkamp ◽  
Tim Flaadt ◽  
Irina Bonzheim ◽  
...  

Myeloproliferative neoplasms (MPN) and myelodysplastic/myeloproliferative neoplasms (MDS/MPN) both harbor the potential to undergo myelodysplastic progression or acceleration and can transform into blast-phase MPN or MDS/MPN, a form of secondary acute myeloid leukemia (AML). Although the initiating transforming events are yet to be determined, current concepts suggest a stepwise acquisition of (additional) somatic mutations—apart from the initial driver mutations—that trigger disease evolution. In this study we molecularly analyzed paired bone marrow samples of MPN and MDS/MPN patients with known progression and compared them to a control cohort of patients with stable disease course. Cases with progression displayed from the very beginning a higher number of mutations compared to stable ones, of which mutations in five (ASXL1, DNMT3A, NRAS, SRSF2 and TP53) strongly correlated with progression and/or transformation, even if only one of these genes was mutated, and this particularly applied to MPN. TET2 mutations were found to have a higher allelic frequency than the putative driver mutation in three progressing cases (“TET2-first”), whereas two stable cases displayed a TET2-positive subclone (“TET2-second”), supporting the hypothesis that not only the sum of mutations but also their order of appearance matters in the course of disease. Our data emphasize the importance of genetic testing in MPN and MDS/MPN patients in terms of risk stratification and identification of imminent disease progression.


2021 ◽  
Vol 11 ◽  
Author(s):  
Juçara Gastaldi Cominal ◽  
Maira da Costa Cacemiro ◽  
Maria Gabriela Berzoti-Coelho ◽  
Illy Enne Gomes Pereira ◽  
Fabiani Gai Frantz ◽  
...  

BackgroundEssential thrombocythemia (ET), polycythemia vera (PV), and primary myelofibrosis (PMF) are clonal hematological diseases classified as Philadelphia chromosome-negative myeloproliferative neoplasms (MPN). MPN pathogenesis is associated with the presence of somatic driver mutations, bone marrow (BM) niche alterations, and tumor inflammatory status. The relevance of soluble mediators in the pathogenesis of MPN led us to analyze the levels of cytokines, chemokines, and growth factors related to inflammation, angiogenesis and hematopoiesis regulation in the BM niche of MPN patients.MethodsSoluble mediator levels in BM plasma samples from 17 healthy subjects, 28 ET, 19 PV, and 16 PMF patients were determined using a multiplex assay. Soluble mediator signatures were created from categorical analyses of high mediator producers. Soluble mediator connections and the correlation between plasma levels and clinic-laboratory parameters were also analyzed.ResultsThe soluble mediator signatures of the BM niche of PV patients revealed a highly inflammatory and pro-angiogenic milieu, with increased levels of chemokines (CCL2, CCL5, CXCL8, CXCL12, CXCL10), and growth factors (GM-CSF M-CSF, HGF, IFN-γ, IL-1β, IL-6Ra, IL-12, IL-17, IL-18, TNF-α, VEGF, and VEGF-R2). ET and PMF patients presented intermediate inflammatory and pro-angiogenic profiles. Deregulation of soluble mediators was associated with some clinic-laboratory parameters of MPN patients, including vascular events, treatment status, risk stratification of disease, hemoglobin concentration, hematocrit, and red blood cell count.ConclusionsEach MPN subtype exhibits a distinct soluble mediator signature. Deregulated production of BM soluble mediators may contribute to MPN pathogenesis and BM niche modification, provides pro-tumor stimuli, and is a potential target for future therapies.


Sign in / Sign up

Export Citation Format

Share Document