scholarly journals Biomass Resources of Phragmites australis in Kazakhstan: Historical Developments, Utilization, and Prospects

Resources ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 74 ◽  
Author(s):  
Azim Baibagyssov ◽  
Niels Thevs ◽  
Sabir Nurtazin ◽  
Rainer Waldhardt ◽  
Volker Beckmann ◽  
...  

Common reed (Phragmites australis (Cav.) Trin. Ex Steud.) is a highly productive wetland plant and a potentially valuable source of renewable biomass worldwide. There is more than 10 million ha of reed area globally, distributed mainly across Eurasia followed by America and Africa. The literature analysis in this paper revealed that Kazakhstan alone harbored ca. 1,600,000–3,000,000 ha of reed area, mostly distributed in the deltas and along the rivers of the country. Herein, we explored the total reed biomass stock of 17 million t year−1 which is potentially available for harvesting in the context of wise use of wetlands. The aim of this paper is to reveal the distribution of reed resource potential in wetland areas of 13 provinces of Kazakhstan and the prospects for its sustainable utilization. Reed can be used as feedstock as an energy source for the production of pellets and biofuels, as lignocellulosic biomass for the production of high strength fibers for novel construction and packaging materials, and innovative polymers for lightweight engineering plastics and adhesive coatings. Thereby, it is unlikely that reed competes for land that otherwise is used for food production.

Author(s):  
Sen-Wang Wang ◽  
Zhen-Hong He ◽  
Jian-Gang Chen ◽  
Kuan Wang ◽  
Zhong-Yu Wang ◽  
...  

Hydrogenolysis of biomass-derived lignin sources is highly important for the conversion of renewable biomass resources to biofuels. However, lots of developed catalysts suffer from the drawbacks of expensive precious metal...


2021 ◽  
Vol 3 (1) ◽  
pp. 243-259
Author(s):  
Yadhu N. Guragain ◽  
Praveen V. Vadlani

Lignocellulosic biomass feedstocks are promising alternatives to fossil fuels for meeting raw material needs of processing industries and helping transit from a linear to a circular economy and thereby meet the global sustainability criteria. The sugar platform route in the biochemical conversion process is one of the promising and extensively studied methods, which consists of four major conversion steps: pretreatment, hydrolysis, fermentation, and product purification. Each of these conversion steps has multiple challenges. Among them, the challenges associated with the pretreatment are the most significant for the overall process because this is the most expensive step in the sugar platform route and it significantly affects the efficiency of all subsequent steps on the sustainable valorization of each biomass component. However, the development of a universal pretreatment method to cater to all types of feedstock is nearly impossible due to the substantial variations in compositions and structures of biopolymers among these feedstocks. In this review, we have discussed some promising pretreatment methods, their processing and chemicals requirements, and the effect of biomass composition on deconstruction efficiencies. In addition, the global biomass resources availability and process intensification ideas for the lignocellulosic-based chemical industry have been discussed from a circularity and sustainability standpoint.


2017 ◽  
Vol 137 ◽  
pp. 30-38 ◽  
Author(s):  
Kevin G. Willson ◽  
Angela N. Perantoni ◽  
Zachary C. Berry ◽  
Matthew I. Eicholtz ◽  
Yvette B. Tamukong ◽  
...  

Author(s):  
Yohei YANAGI ◽  
Masahiko SEKINE ◽  
Ariyo KANNO ◽  
Kousuke MATSUDA

Sign in / Sign up

Export Citation Format

Share Document