photosynthetic performance
Recently Published Documents


TOTAL DOCUMENTS

935
(FIVE YEARS 351)

H-INDEX

53
(FIVE YEARS 8)

Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 195
Author(s):  
Qi Shi ◽  
Hu Sun ◽  
Stefan Timm ◽  
Shibao Zhang ◽  
Wei Huang

Fluctuating light (FL) is a typical natural light stress that can cause photodamage to photosystem I (PSI). However, the effect of growth light on FL-induced PSI photoinhibition remains controversial. Plants grown under high light enhance photorespiration to sustain photosynthesis, but the contribution of photorespiration to PSI photoprotection under FL is largely unknown. In this study, we examined the photosynthetic performance under FL in tomato (Lycopersicon esculentum) plants grown under high light (HL-plants) and moderate light (ML-plants). After an abrupt increase in illumination, the over-reduction of PSI was lowered in HL-plants, resulting in a lower FL-induced PSI photoinhibition. HL-plants displayed higher capacities for CO2 fixation and photorespiration than ML-plants. Within the first 60 s after transition from low to high light, PSII electron transport was much higher in HL-plants, but the gross CO2 assimilation rate showed no significant difference between them. Therefore, upon a sudden increase in illumination, the difference in PSII electron transport between HL- and ML-plants was not attributed to the Calvin–Benson cycle but was caused by the change in photorespiration. These results indicated that the higher photorespiration in HL-plants enhanced the PSI electron sink downstream under FL, which mitigated the over-reduction of PSI and thus alleviated PSI photoinhibition under FL. Taking together, we here for the first time propose that photorespiration acts as a safety valve for PSI photoprotection under FL.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 76
Author(s):  
Amany Ibrahim ◽  
Esmail M. El-Fakharany ◽  
Marwa M. Abu-Serie ◽  
Marwa F. ElKady ◽  
Marwa Eltarahony

Methyl orange (MO) is categorized among the recalcitrant and refractory xenobiotics, representing a significant burden in the ecosystem. To clean-up the surrounding environment, advances in microbial degradation have been made. The main objective of this study was to investigate the extent to which an autochthonous consortium immobilized in alginate beads can promote an efficient biodegradation of MO. By employing response surface methodology (RSM), a parametric model explained the interaction of immobilized consortium (Raoultella planticola, Ochrobactrum thiophenivorans, Bacillus flexus and Staphylococcus xylosus) to assimilate 200 mg/L of MO in the presence of 40 g/L of NaCl within 120 h. Physicochemical analysis, including UV-Vis spectroscopy and FTIR, and monitoring of the degrading enzymes (azoreductase, DCIP reductase, NADH reductase, laccase, LiP, MnP, nitrate reductase and tyrosinase) were used to evaluate MO degradation. In addition, the toxicity of MO-degradation products was investigated by means of phytotoxicity and cytotoxicity. Chlorella vulgaris retained its photosynthetic performance (>78%), as shown by the contents of chlorophyll-a, chlorophyll-b and carotenoids. The viability of normal lung and kidney cell lines was recorded to be 90.63% and 99.23%, respectively, upon exposure to MO-metabolic outcomes. These results reflect the non-toxicity of treated samples, implying their utilization in ferti-irrigation applications and industrial cooling systems. Moreover, the immobilized consortium was employed in the bioremediation of MO from artificially contaminated agricultural and industrial effluents, in augmented and non-augmented systems. Bacterial consortium remediated MO by 155 and 128.5 mg/L in augmented systems of agricultural and industrial effluents, respectively, within 144 h, revealing its mutual synergistic interaction with both indigenous microbiotas despite differences in their chemical, physical and microbial contents. These promising results encourage the application of immobilized consortium in bioaugmentation studies using different resources.


2022 ◽  
Vol 12 ◽  
Author(s):  
Elisabeth Hommel ◽  
Monique Liebers ◽  
Sascha Offermann ◽  
Thomas Pfannschmidt

Photosynthesis needs to run efficiently under permanently changing illumination. To achieve this, highly dynamic acclimation processes optimize photosynthetic performance under a variety of rapidly changing light conditions. Such acclimation responses are acting by a complex interplay of reversible molecular changes in the photosynthetic antenna or photosystem assemblies which dissipate excess energy and balance uneven excitation between the two photosystems. This includes a number of non-photochemical quenching processes including state transitions and photosystem II remodeling. In the laboratory such processes are typically studied by selective illumination set-ups. Two set-ups known to be effective in a highly similar manner are (i) light quality shifts (inducing a preferential excitation of one photosystem over the other) or (ii) dark-light shifts (inducing a general off-on switch of the light harvesting machinery). Both set-ups result in similar effects on the plastoquinone redox state, but their equivalence in induction of photosynthetic acclimation responses remained still open. Here, we present a comparative study in which dark-light and light-quality shifts were applied to samples of the same growth batches of plants. Both illumination set-ups caused comparable effects on the phosphorylation of LHCII complexes and, hence, on the performance of state transitions, but generated different effects on the degree of state transitions and the formation of PSII super-complexes. The two light set-ups, thus, are not fully equivalent in their physiological effectiveness potentially leading to different conclusions in mechanistic models of photosynthetic acclimation. Studies on the regulation of photosynthetic light acclimation, therefore, requires to regard the respective illumination test set-up as a critical parameter that needs to be considered in the discussion of mechanistic and regulatory aspects in this subject.


Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 96
Author(s):  
Jaroslav Lang ◽  
Barbora Zikmundová ◽  
Josef Hájek ◽  
Miloš Barták ◽  
Peter Váczi

Fodder galega (Galega orientalis) is a perennial, wintering plant with great potential for agricultural development. The species has a large yield potential and exceptional adaptability to various environmental conditions. The sensitivity of G. orientalis to herbicides, however, as well as the photosynthetic performance of the species, are generally unknown. Our study aimed to evaluate the effects of the application of selected phenoxy herbicides (MCPA, MCPB) and the imidazoline family herbicide (IMA) on the parameters of primary photosynthetic processes as understood through fast chlorophyll fluorescence kinetics (OJIP). The effect of cultivation temperature was also investigated in the plants grown at 5, 18 and 25 °C. Time courses of OJIP-derived parameters describing photosystem II functioning after foliar application revealed that the plants showed negative responses to the herbicides in the order MCPB–MCPA–IMA within 24 h after the application. The application of herbicides decreased the values of maximum chlorophyll fluorescence (FM) and increased minimum fluorescence (F0), which led to a reduction in the maximal efficiency of PSII (FV/FM). Applications of MCPA and MCPB decreased variable chlorophyll fluorescence at 2 ms (VJ), 30 ms (VI) and VP, as well as the performance index (PIABS), which is considered a vitality proxy. The application increased absorption flux (ABS/RC), trapped energy flux (TRo/RC) and dissipated energy flux (DIo/RC). The effects were more pronounced in plants grown at 18 and 25 °C. The study revealed that the OJIP-derived parameters sensitively reflected an early response of G. orientalis to the foliar application of herbicides. Negative responses of PSII were more apparent in MCPA- and MCPB- exposed plants than IMA-exposed plants.


Horticulturae ◽  
2021 ◽  
Vol 8 (1) ◽  
pp. 28
Author(s):  
Muhammad Ahsan Altaf ◽  
Huangying Shu ◽  
Yuanyuan Hao ◽  
Yan Zhou ◽  
Muhammad Ali Mumtaz ◽  
...  

Heavy metal contamination is one of the current serious environmental and agricultural soil issues, and it is mainly due to anthropogenic activities. Vanadium (V) is found in low concentrations in a wide range of plants and is widely distributed in soils. The current study aimed to determine how pepper seedlings responded to various V concentrations, as well as the detrimental effects of V on growth, root morphological traits, photosynthetic performance, reactive oxygen species (ROS), osmolytes production, antioxidant enzyme activities, and V uptake. Pepper seedlings (5 weeks old) were grown in hydroponic culture with six V levels (0, 10, 20, 30, 40, and 50 mg L−1 NH4VO3). After two weeks of V treatment, low level of V (10, 20 mg L−1) enhanced the growth status, conversely higher V (30, 40, and 50 mg L−1) level reduced the growth. The leaf gas exchange elements, pigments molecules, and root growth characteristics are also affected by higher V concentrations. Moreover, V uptake was higher in roots than in the shoot of pepper seedlings. Similarly, osmolytes content, ROS production, and antioxidant enzymes activities were significantly improved under V stress. Concluding, lower V (10, 20 mg L−1) concentration positively affected pepper growth, and higher V (30, 40, and 50 mg L−1) concentration had a detrimental effect on pepper physiological and biochemical mechanisms.


2021 ◽  
Author(s):  
Daniel Buszewicz ◽  
Łucja Maria Kowalewska ◽  
Radosław Mazur ◽  
Marta Zajbt-Łuczniewska ◽  
Liliana Surmacz ◽  
...  

Polyprenols are ubiquitous isoprenoid compounds that accumulate in large quantities in plant photosynthetic tissues. While our knowledge of polyprenol biochemistry is constantly expanding, the regulation of their biosynthesis as well as the molecular basis of their cellular action are still poorly understood. In Arabidopsis, the polyprenols Pren-9, -10 and -11, synthesized by cis-prenyltransferase 7 (CPT7), are localized in plastidial membranes and affect the photosynthetic performance of chloroplasts. In this report we present evidence that plastidial polyprenols are among the major constituents of thylakoid membranes. Disturbances in polyprenol level, caused by alterations in CPT7 expression, change chloroplast ultrastructure, affect aggregation of LHCII complexes and modulate non-photochemical quenching (NPQ). Moreover, we show that Arabidopsis responds to high temperature by upregulating expression of CPT7 and increasing the accumulation of CPT7-derived polyprenols. These heat-induced changes in polyprenol biosynthesis are mediated by Heat Shock Transcription Factors of the HSFA1 family, the master regulators of heat stress response. Collectively, results presented in this report bring us closer to understanding the mechanisms by which polyprenols affect plant physiology and provide an additional link between chloroplast biology and plant responses to changing environmental conditions.


Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1330
Author(s):  
Angelika Graiff ◽  
Ulf Karsten

The keystone macroalga Fucus vesiculosus (Phaeophyceae), dominating shallow hard bottom zones, encounters a strongly and rapidly changing environment due to anthropogenic change over the last decades in the Baltic Sea. Thus, in four successive benthic mesocosm experiments, the single and joint effects of increased temperature (Δ + 5 °C) and pCO2 (1100 ppm) under ambient irradiances were experimentally tested on the antioxidative properties of western Baltic F. vesiculosus in all seasons. The antioxidative properties (superoxide dismutase activity and lipid peroxidation) as well as the sensitivity of F. vesiculosus photosynthetic performance (i.e., effective quantum yield) to oxidative stress under these global change scenarios were seasonally examined. F. vesiculosus exhibited high and relatively constant photosynthetic performance under artificial hydrogen peroxide (H2O2) stress in all seasons. High activities of superoxide dismutase and a relatively low degree of the biomarker for lipid peroxidation (malondialdehyde concentration) were found in F. vesiculosus. Thus, Baltic F. vesiculosus is equipped with a high antioxidative potential to tolerate strong oxidative stress for at least short periods. Antioxidative properties of F. vesiculosus were more strongly affected by warming than by acidification, resulting in significantly increased malondialdehyde concentrations under elevated temperature levels in all seasons. Oxidative stress was enhanced in F. vesiculosus under warming but seem to be modulated by seasonally varying environmental conditions (e.g., high and low irradiances) and pCO2 levels. However, more frequent summer heatwaves reaching and surpassing lethal temperatures in shallow coastal waters may determine the F. vesiculosus population’s overall persistence in the Baltic Sea.


Sign in / Sign up

Export Citation Format

Share Document