scholarly journals Absolute Calibration or Validation of the Altimeters on the Sentinel-3A and the Jason-3 over Lake Issykkul (Kyrgyzstan)

2018 ◽  
Vol 10 (11) ◽  
pp. 1679 ◽  
Author(s):  
Jean-François Crétaux ◽  
Muriel Bergé-Nguyen ◽  
Stephane Calmant ◽  
Nurzat Jamangulova ◽  
Rysbek Satylkanov ◽  
...  

Calibration/Validation (C/V) studies using sites in the oceans have a long history and protocols are well established. Over lakes, C/V allows addressing problems such as the performance of the various retracking algorithms and evaluating the accuracy of the geophysical corrections for continental waters. This is achievable when measurements of specific and numerous field campaigns and a ground permanent network of level gauges and weather stations are processed. C/V consists of installation of permanent sites (weather stations, limnigraphs, and GPS reference points) and the organization of regular field campaigns. The lake Issykkul serves as permanent site of C/V, for a multi-mission purpose. The objective of this paper is to calculate the altimeter biases of Jason-3 and Sentinel-3A, both belonging to an operational satellite system which is used for the long-term monitoring of lake level variations. We have also determined the accuracy of the altimeters of these two satellites, through a comparison analysis with in situ data. In 2016 and 2017, three campaigns have been organized over this lake in order to estimate the absolute bias of the nadir altimeter onboard the Jason-3 and Sentinel-3A. The fieldwork consisted of measuring water height using a GPS system, carried on a boat, along the track of the altimeter satellite across the lake. It was performed at the time of the pass of the altimeter. Absolute altimeter biases were calculated by averaging the water height differences along the pass of the satellite (GPS from the boat system versus altimetry). Jason-3 operates in a Low Resolution Mode (LRM), while the Sentinel-3A operates in Synthetic Aperture Radar (SAR) mode. In this study we found that the absolute biases measured for Jason-3 were −28 ± 40 mm with the Ocean retracker and 206 ± 30 mm with the Ice-1 retracker. The biases for Sentinel-3A were −14 ± 20 mm with the Samosa (Ocean like) retracker and 285 ± 20 mm with the OCOG (Ice-1-like) retracker. We have also evaluated the accuracy of these two altimeters over Lake Issykkul which reached to 3 cm, for both the instruments, using the Ocean retracker.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Fahad Alhomayani ◽  
Mohammad H. Mahoor

AbstractIn recent years, fingerprint-based positioning has gained researchers’ attention since it is a promising alternative to the Global Navigation Satellite System and cellular network-based localization in urban areas. Despite this, the lack of publicly available datasets that researchers can use to develop, evaluate, and compare fingerprint-based positioning solutions constitutes a high entry barrier for studies. As an effort to overcome this barrier and foster new research efforts, this paper presents OutFin, a novel dataset of outdoor location fingerprints that were collected using two different smartphones. OutFin is comprised of diverse data types such as WiFi, Bluetooth, and cellular signal strengths, in addition to measurements from various sensors including the magnetometer, accelerometer, gyroscope, barometer, and ambient light sensor. The collection area spanned four dispersed sites with a total of 122 reference points. Each site is different in terms of its visibility to the Global Navigation Satellite System and reference points’ number, arrangement, and spacing. Before OutFin was made available to the public, several experiments were conducted to validate its technical quality.


1983 ◽  
Vol 22 (10) ◽  
pp. 1551 ◽  
Author(s):  
R. McAdams ◽  
S. K. Srivastava

2020 ◽  
Vol 10 (3) ◽  
pp. 115
Author(s):  
Muhamet Reçica ◽  
Naser Pajaziti

Topics related to the structure of the temporal system of Albanian language always give opportunities for new discussions to deal with certain aspects related to various forms of this system, and one of them is the aorist, as a tense containing many semantic, temporal, aspectual, stylistic values, etc. The relationships that exist between the verbal tenses in this system within the absolute time-relative time dimension, which relate to the independent or dependent use of temporal forms against one another in different discoursing contexts, make up an interpretation-based approach to interest. Hence, the essential objective of this paper will be specifically the relations of the Albanian aorist to the other verbal forms, always observed with a time reference point, to illuminate the character of these purely temporal relations against each other under all circumstances of the actions that take place and are displayed by verbal forms in different contexts, relying on the corpus of examined materials.


Author(s):  
S. Maier ◽  
T. Gostner ◽  
F. van de Camp ◽  
A. H. Hoppe

Abstract. In many fields today, it is necessary that a team has to do operational planning for a precise geographical location. Examples for this are staff work, the preparation of surveillance tasks at major events or state visits and sensor deployment planning for military and civil reconnaissance. For these purposes, Fraunhofer IOSB is developing the Digital Map Table (DigLT). When making important decisions, it is often helpful or even necessary to assess a situation on site. An augmented reality (AR) solution could be useful for this assessment. For the visualization of markers at specific geographical coordinates in augmented reality, a smartphone has to be aware of its position relative to the world. It is using the sensor data of the camera and inertial measurement unit (IMU) for AR while determining its absolute location and direction with the Global Navigation Satellite System (GNSS) and its magnetic compass. To validate the positional accuracy of AR markers, we investigated the current state of the art and existing solutions. A prototype application has been developed and connected to the DigLT. With this application, it is possible to place markers at geographical coordinates that will show up at the correct location in augmented reality at anyplace in the world. Additionally, a function was implemented that lets the user select a point from the environment in augmented reality, whose geographical coordinates are sent to the DigLT. The accuracy and practicality of the placement of markers were examined using geodetic reference points. As a result, we can conclude that it is possible to mark larger objects like a car or a house, but the accuracy mainly depends on the internal compass, which causes a rotational error that increases with the distance to the target.


2021 ◽  
Vol 112 (1) ◽  
pp. 47-57
Author(s):  
Violetta Sokoła-Szewioła ◽  
Zbigniew Siejka

Abstract The problem involving the monitoring of surface ground movements in post-mining areas is particularly important during the period of mine closures. During or after flooding of a mine, mechanical properties of the rock mass may be impaired, and this may trigger subsidence, surface landslides, uplift, sinkholes or seismic activity. It is, therefore, important to examine and select updating methods and plans for long-term monitoring of post-mining areas to mitigate seismic hazards or surface deformation during and after mine closure. The research assumed the implementation of continuous monitoring of surface movements using the Global Navigation Satellite System (GNSS) in the area of a closed hard coal mine ‘Kazimierz-Juliusz’, located in Poland. In order to ensure displacement measurement results with the accuracy of several millimetres, the accuracy of multi-GNSS observations carried out in real time as a combination of four global navigation systems, Global Positioning System (GPS), Globalnaja Navigacionnaja Sputnikova Sistema (GLONASS), Galileo and BeiDou, was determined. The article presents the results of empirical research conducted at four reference points. The test observations were made in variants comprising measurements based on: GPS, GPS and GLONASS systems, GPS, GLONASS and Galileo systems, GPS, GLONASS, Galileo and BeiDou systems. For each adopted solution, daily measurement sessions were performed using the RTK technique. The test results were subjected to accuracy analyses. Based on the obtained results, it was found that GNSS measurements should be carried out with the use of three navigation systems (GPS, GLONASS, Galileo), as an optimal solution for the needs of continuous geodetic monitoring in the area of the study.


Author(s):  
Mohammad S. Sharawi

The global positioning satellite system (GPS) has been utilized for commercial use after the year 2000. Since then, GPS receivers have been integrated for accurate positing of ground as well as space vehicles. Almost all aircrafts nowadays rely on GPS based system for their take off, landing, and en-route navigation. Relying on GPS alone does note provide the meter level accuracy needed to guarantee safe operation of aircrafts. Thus several augmentation systems have been deployed worldwide to enhance the accuracy of the GPS system. Several augmentation systems that serve local as well as wide coverage areas are discussed in this chapter, specifically the LAAS system, the WAAS system as well as the EGNOS system. The architecture as well the performance metrics for each of these augmentation systems are presented and discussed.


1985 ◽  
Vol 111 ◽  
pp. 479-483
Author(s):  
R. S. Polidan ◽  
J. B. Holberg

Recent results have shed new light on the status of the calibration of absolute stellar fluxes between 912 and 1200 Å. Observations of hot white dwarfs, subdwarfs and planetary nebula nuclei with the Voyager ultraviolet spectrometers provide evidence that the current calibration agrees very well with extrapolations of IUE energy distributions shortwards of 1200 Å. Voyager observations of main sequence B-stars used as flux calibration sources have revealed that many are variable in brightness in the 912–1200 Å region. We conclude there is no current observational motivation for any revision of the 912 to 1200 Å calibration described by Holberg et al. (1982).


1978 ◽  
Vol 80 ◽  
pp. 65-76 ◽  
Author(s):  
D. S. Hayes

Scales of fundamental bolometric connections (B.C.) and effective temperatures (Teff) as a function of spectral type or color are necessary for the comparison of observations and theory in the HR diagram.


2019 ◽  
Vol 68 (6) ◽  
pp. 1961-1966 ◽  
Author(s):  
Jianting Zhao ◽  
Yunfeng Lu ◽  
Changwei Zhai ◽  
Qing He ◽  
Xiaoding Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document