scholarly journals Using Optical Water Types to Monitor Changes in Optically Complex Inland and Coastal Waters

2019 ◽  
Vol 11 (19) ◽  
pp. 2297 ◽  
Author(s):  
Kristi Uudeberg ◽  
Ilmar Ansko ◽  
Getter Põru ◽  
Ave Ansper ◽  
Anu Reinart

The European Space Agency’s Copernicus satellites Sentinel-2 and Sentinel-3 provide observations with high spectral, spatial, and temporal resolution which can be used to monitor inland and coastal waters. Such waters are optically complex, and the water color may vary from completely clear to dark brown. The main factors influencing water color are colored dissolved organic matter, phytoplankton, and suspended sediments. Recently, there has been a growing interest in the use of the optical water type (OWT) classification in the remote sensing of ocean color. Such classification helps to clarify relationships between different properties inside a certain class and quantify variation between classes. In this study, we present a new OWT classification based on the in situ measurements of reflectance spectra for boreal region lakes and coastal areas without extreme optical conditions. This classification divides waters into five OWT (Clear, Moderate, Turbid, Very Turbid, and Brown) and shows that different OWTs have different remote sensing reflectance spectra and that each OWT is associated with a specific bio-optical condition. Developed OWTs are distinguishable by both the MultiSpectral Instrument (MSI) and the Ocean and Land Color Instrument (OLCI) sensors, and the accuracy of the OWT assignment was 95% for both the MSI and OLCI bands. To determine OWT from MSI images, we tested different atmospheric correction (AC) processors, namely ACOLITE, C2RCC, POLYMER, and Sen2Cor and for OLCI images, we tested AC processors ALTNNA, C2RCC, and L2. The C2RCC AC processor was the most accurate and reliable for use with MSI and OLCI images to estimate OWTs.

2019 ◽  
Vol 11 (15) ◽  
pp. 1744 ◽  
Author(s):  
Daniel Maciel ◽  
Evlyn Novo ◽  
Lino Sander de Carvalho ◽  
Cláudio Barbosa ◽  
Rogério Flores Júnior ◽  
...  

Remote sensing imagery are fundamental to increasing the knowledge about sediment dynamics in the middle-lower Amazon floodplains. Moreover, they can help to understand both how climate change and how land use and land cover changes impact the sediment exchange between the Amazon River and floodplain lakes in this important and complex ecosystem. This study investigates the suitability of Landsat-8 and Sentinel-2 spectral characteristics in retrieving total (TSS) and inorganic (TSI) suspended sediments on a set of Amazon floodplain lakes in the middle-lower Amazon basin using in situ Remote Sensing Reflectance (Rrs) measurements to simulate Landsat 8/OLI (Operational Land Imager) and Sentinel 2/MSI (Multispectral Instrument) bands and to calibrate/validate several TSS and TSI empirical algorithms. The calibration was based on the Monte Carlo Simulation carried out for the following datasets: (1) All-Dataset, consisting of all the data acquired during four field campaigns at five lakes spread over the lower Amazon floodplain (n = 94); (2) Campaign-Dataset including samples acquired in a specific hydrograph phase (season) in all lakes. As sample size varied from one season to the other, n varied from 18 to 31; (3) Lake-Dataset including samples acquired in all seasons at a given lake with n also varying from 17 to 67 for each lake. The calibrated models were, then, applied to OLI and MSI scenes acquired in August 2017. The performance of three atmospheric correction algorithms was also assessed for both OLI (6S, ACOLITE, and L8SR) and MSI (6S, ACOLITE, and Sen2Cor) images. The impact of glint correction on atmosphere-corrected image performance was assessed against in situ glint-corrected Rrs measurements. After glint correction, the L8SR and 6S atmospheric correction performed better with the OLI and MSI sensors, respectively (Mean Absolute Percentage Error (MAPE) = 16.68% and 14.38%) considering the entire set of bands. However, for a given single band, different methods have different performances. The validated TSI and TSS satellite estimates showed that both in situ TSI and TSS algorithms provided reliable estimates, having the best results for the green OLI band (561 nm) and MSI red-edge band (705 nm) (MAPE < 21%). Moreover, the findings indicate that the OLI and MSI models provided similar errors, which support the use of both sensors as a virtual constellation for the TSS and TSI estimate over an Amazon floodplain. These results demonstrate the applicability of the calibration/validation techniques developed for the empirical modeling of suspended sediments in lower Amazon floodplain lakes using medium-resolution sensors.


Author(s):  
D. R. A. e Santos ◽  
J. M. Martinez ◽  
T. Harmel ◽  
H. D. Borges ◽  
H. Roig

Abstract. Data provided by spatial sensors combined with remote sensing techniques and analysis of the optical properties of waters allow the mapping of the suspended sediment concentration (SSC) in aquatic bodies. For this, estimation models require data with the lowest possible amount of atmospheric artifacts. In this study we compared the water remote sensing reflectance (Rrs) of the Santo Antônio Hydroelectric Power Plant reservoir in Porto Velho-RO, Brazil, after applying three different atmospheric corrections algorithms in Sentinel-2/MSI imagery products. The atmospheric corrected reflectances of the MODIS sensor were also used for reference. SSC was calculated with models based on the red and near-infrared (NIR) bands over three distinct regions of the reservoir. Reflectance data showed significant variations for Sentinel-2, bands 4 and 8a, and MODIS, bands RED and IR, when different atmospheric correction algorithms were used. SSC maps and estimates were produced to show sediment load variation as a function of hydrological regime. The analyzes showed that the SSC estimates done with Sentinel-2 / MSI satellite images using GRS (Glint Remove Sentinel) atmospheric correction presented an average difference of 27.3% and were the closest to the in situ measurements. SSC estimates from MODIS products were around 34.6% different from estimates made using the GRS atmospheric correction applied to Sentinel-2 / MSI products.


2021 ◽  
Author(s):  
Masuma Chowdhury ◽  
César Vilas ◽  
Stef VanBergeijk ◽  
Gabriel Navarro ◽  
Irene Laiz ◽  
...  

&lt;p&gt;Application of Sentinel-2A/B satellites to retrieve turbidity in the Guadalquivir estuary (Southern Spain)&lt;/p&gt;&lt;p&gt;Due to climate change, contamination, and diverse anthropogenic effects, water quality monitoring is intensifying its importance nowadays. Remote sensing techniques are becoming an important tool, in parallel with fieldwork, for supporting the cost-effective accomplishment of water quality mapping and management. In the recent years, Sentinel-2A/B twin satellites of the European Commission Earth Observation Copernicus programme emerged as a promising way to monitor complex coastal waters with higher spatial, spectral and temporal resolution. However, atmospheric and sunglint correction for the Sentinel-2 data over the coastal and inland waters is one of the major challenges in terms of accurate water quality retrieval. This study aimed at evaluating the ACOLITE atmospheric correction processor in order to develop a regional turbidity model for the Guadalquivir estuary (southern Spain) and its adjacent coastal region using Sentinel-2 imagery at a 10 m spatial resolution. Two settings for the atmospheric correction algorithm within the ACOLITE software were applied: the standard dark spectrum fitting (DSF) and the DSF with an additional option for sunglint correction. Turbidity field data were collected for calibration/validation purposes from the monthly Guadalquivir Estuary-LTER programme by Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA) using a YSI-EXO2 multiparametric sonde for the period 2017-2020 at 2 fixed stations (Bonanza and Tarfia) sampling 4 different water masses along the estuary salinity gradient. Several regional models were evaluated using the red band (665 nm) and the red-edge bands (i.e. 704, 740, 783 nm) of the Sentinel-2 satellites. The results revealed that DSF with glint correction performs better than without glint correction, especially for this region where sunglint is a major concern during summer, affecting most of the satellite scenes. This study demonstrates the invaluable potential of the Sentinel-2A/B mission to monitor complex coastal waters even though they were not designed for aquatic remote sensing applications. This improved knowledge will be a helpful guideline and tool for the coastal managers, policy-makers, stakeholders and the scientific community for ensuring sustainable ecosystem-based coastal resource management under a global climate change scenario.&lt;/p&gt;


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 742 ◽  
Author(s):  
Tuuli Soomets ◽  
Kristi Uudeberg ◽  
Dainis Jakovels ◽  
Agris Brauns ◽  
Matiss Zagars ◽  
...  

Inland waters, including lakes, are one of the key points of the carbon cycle. Using remote sensing data in lake monitoring has advantages in both temporal and spatial coverage over traditional in-situ methods that are time consuming and expensive. In this study, we compared two sensors on different Copernicus satellites: Multispectral Instrument (MSI) on Sentinel-2 and Ocean and Land Color Instrument (OLCI) on Sentinel-3 to validate several processors and methods to derive water quality products with best performing atmospheric correction processor applied. For validation we used in-situ data from 49 sampling points across four different lakes, collected during 2018. Level-2 optical water quality products, such as chlorophyll-a and the total suspended matter concentrations, water transparency, and the absorption coefficient of the colored dissolved organic matter were compared against in-situ data. Along with the water quality products, the optical water types were obtained, because in lakes one-method-to-all approach is not working well due to the optical complexity of the inland waters. The dynamics of the optical water types of the two sensors were generally in agreement. In most cases, the band ratio algorithms for both sensors with optical water type guidance gave the best results. The best algorithms to obtain the Level-2 water quality products were different for MSI and OLCI. MSI always outperformed OLCI, with R2 0.84–0.97 for different water quality products. Deriving the water quality parameters with optical water type classification should be the first step in estimating the ecological status of the lakes with remote sensing.


Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 3004
Author(s):  
Antonia Ivanda ◽  
Ljiljana Šerić ◽  
Marin Bugarić ◽  
Maja Braović

In this paper, we describe a method for the prediction of concentration of chlorophyll-a (Chl-a) from satellite data in the coastal waters of Kaštela Bay and the Brač Channel (our case study areas) in the Republic of Croatia. Chl-a is one of the parameters that indicates water quality and that can be measured by in situ measurements or approximated as an optical parameter with remote sensing. Remote sensing products for monitoring Chl-a are mostly based on the ocean and open sea monitoring and are not accurate for coastal waters. In this paper, we propose a method for remote sensing monitoring that is locally tailored to suit the focused area. This method is based on a data set constructed by merging Sentinel 2 Level-2A satellite data with in situ Chl-a measurements. We augmented the data set horizontally by transforming the original feature set, and vertically by adding synthesized zero measurements for locations without Chl-a. By transforming features, we were able to achieve a sophisticated model that predicts Chl-a from combinations of features representing transformed bands. Multiple Linear Regression equation was derived to calculate Chl-a concentration and evaluated quantitatively and qualitatively. Quantitative evaluation resulted in R2 scores 0.685 and 0.659 for train and test part of data set, respectively. A map of Chl-a of the case study area was generated with our model for the dates of the known incidents of algae blooms. The results that we obtained are discussed in this paper.


2021 ◽  
Vol 14 (1) ◽  
pp. 83
Author(s):  
Xiaocheng Zhou ◽  
Xueping Liu ◽  
Xiaoqin Wang ◽  
Guojin He ◽  
Youshui Zhang ◽  
...  

Surface reflectance (SR) estimation is the most essential preprocessing step for multi-sensor remote sensing inversion of geophysical parameters. Therefore, accurate and stable atmospheric correction is particularly important, which is the premise and basis of the quantitative application of remote sensing. It can also be used to directly compare different images and sensors. The Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi-Spectral Instrument (MSI) surface reflectance products are publicly available and demonstrate high accuracy. However, there is not enough validation using synchronous spectral measurements over China’s land surface. In this study, we utilized Moderate Resolution Imaging Spectroradiometer (MODIS) atmospheric products reconstructed by Categorical Boosting (CatBoost) and 30 m ASTER Global Digital Elevation Model (ASTER GDEM) data to adjust the relevant parameters to optimize the Second Simulation of Satellite Signal in the Solar Spectrum (6S) model. The accuracy of surface reflectance products obtained from the optimized 6S model was compared with that of the original 6S model and the most commonly used Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) model. Surface reflectance products were validated and evaluated with synchronous in situ measurements from 16 sites located in five provinces of China: Fujian, Gansu, Jiangxi, Hunan, and Guangdong. Through the indirect and direct validation across two sensors and three methods, it provides evidence that the synchronous measurements have the higher and more reliable validation accuracy. The results of the validation indicated that, for Landsat-8 OLI and Sentinel-2 MSI SR products, the overall root mean square error (RMSE) calculated results of optimized 6S, original 6S and FLAASH across all spectral bands were 0.0295, 0.0378, 0.0345, and 0.0313, 0.0450, 0.0380, respectively. R2 values reached 0.9513, 0.9254, 0.9316 and 0.9377, 0.8822, 0.9122 respectively. Compared with the original 6S model and FLAASH model, the mean percent absolute error (MPAE) of the optimized 6S model was reduced by 32.20% and 15.86% for Landsat-8 OLI, respectively. On the other, for the Sentinel-2 MSI SR product, the MPAE value was reduced by 33.56% and 33.32%. For the two kinds of data, the accuracy of each band was improved to varying extents by the optimized 6S model with the auxiliary data. These findings support the hypothesis that reliable auxiliary data are helpful in reducing the influence of the atmosphere on images and restoring reality as much as is feasible.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4125
Author(s):  
Mariana A. Soppa ◽  
Brenner Silva ◽  
François Steinmetz ◽  
Darryl Keith ◽  
Daniel Scheffler ◽  
...  

Spaceborne imaging spectroscopy, also called hyperspectral remote sensing, has shown huge potential to improve current water colour retrievals and, thereby, the monitoring of inland and coastal water ecosystems. However, the quality of water colour retrievals strongly depends on successful removal of the atmospheric/surface contributions to the radiance measured by satellite sensors. Atmospheric correction (AC) algorithms are specially designed to handle these effects, but are challenged by the hundreds of narrow spectral bands obtained by hyperspectral sensors. In this paper, we investigate the performance of Polymer AC for hyperspectral remote sensing over coastal waters. Polymer is, in nature, a hyperspectral algorithm that has been mostly applied to multispectral satellite data to date. Polymer was applied to data from the Hyperspectral Imager for the Coastal Ocean (HICO), validated against in situ multispectral (AERONET-OC) and hyperspectral radiometric measurements, and its performance was compared against that of the hyperspectral version of NASA’s standard AC algorithm, L2gen. The match-up analysis demonstrated very good performance of Polymer in the green spectral region. The mean absolute percentage difference across all the visible bands varied between 16% (green spectral region) and 66% (red spectral region). Compared with L2gen, Polymer remote sensing reflectances presented lower uncertainties, greater data coverage, and higher spectral similarity to in situ measurements. These results demonstrate the potential of Polymer to perform AC on hyperspectral satellite data over coastal waters, thus supporting its application in current and future hyperspectral satellite missions.


2021 ◽  
Vol 10 (2) ◽  
pp. 86 ◽  
Author(s):  
Rogério Ribeiro Marinho ◽  
Tristan Harmel ◽  
Jean-Michel Martinez ◽  
Naziano Pantoja Filizola Junior

Monitoring suspended sediments through remote sensing data in black-water rivers is a challenge. Herein, remote sensing reflectance (Rrs) from in situ measurements and Sentinel-2 Multi-Spectral Instrument (MSI) images were used to estimate the suspended sediment concentration (SSC) in the largest black-water river of the Amazon basin. The Negro River exhibits extremely low Rrs values (<0.005 sr−1 at visible and near-infrared bands) due to the elevated absorption of coloured dissolved organic matter (aCDOM at 440 nm > 7 m−1) caused by the high amount of dissolved organic carbon (DOC > 7 mg L−1) and low SSC (<5 mg L−1). Interannual variability of Rrs is primarily controlled by the input of suspended sediments from the Branco River, which is a clear water river that governs the changes in the apparent optical properties of the Negro River, even at distances that are greater than 90 km from its mouth. Better results were obtained using the Sentinel-2 MSI Red band (Band 4 at 665 nm) in order to estimate the SSC, with an R2 value greater than 0.85 and an error less than 20% in the adjusted models. The magnitudes of water reflectance in the Sentinel-2 MSI Red band were consistent with in situ Rrs measurements, indicating the large spatial variability of the lower SSC values (0 to 15 mg L−1) in a complex anabranching reach of the Negro River. The in situ and satellite data analysed in this study indicates sedimentation processes in the lower Negro River near the Amazon River. The results suggest that the radiometric characteristics of sensors, like sentinel-2 MSI, are suitable for monitoring the suspended sediment concentration in large tropical black-water rivers.


2019 ◽  
pp. 15 ◽  
Author(s):  
J. Delegido ◽  
P. Urrego ◽  
E. Vicente ◽  
X. Sòria-Perpinyà ◽  
J.M. Soria ◽  
...  

<p>Transparency or turbidity is one of the main indicators in studies of water quality using remote sensing. Transparency can be measured <em>in situ</em> through the Secchi disc depth (SD), and turbidity using a turbidimeter. In recent decades, different relationships between bands from different remote sensing sensors have been used for the estimation of these variables. In this paper, several indices and spectral bands have been calibrated in order to estimate transparency from Sentinel-2 (S2) images from field data, obtained throughout 2017 and 2018 in Júcar basin reservoirs with a great variety of trophic states. Three atmospheric correction methods developed for waters have been applied to the S2 level L1C images taken at the same day as the field data: Polymer, C2RCC and C2X. From the spectra obtained from S2 and the SD field data, it has been found that the smallest error is obtained with the images atmospherically corrected with Polymer and a potential adjustment of the reflectivities’ ratio of the blue and green bands (R<sub>490</sub>/R<sub>560</sub>), which allow the estimation of SD with a relative error of 13%. Also the C2X method presents good adjustment with the same bands ratio, although with a greater error, while the correction C2RCC shows the worst correlation. The relationship between SD (in m) and turbidity (in NTU) has also been obtained, which provides an operational method for estimating turbidity with S2. The relationship for the different reservoirs between SD and chlorophyll-a concentration, suspended solids and dissolved organic matter, is also shown.</p>


Sign in / Sign up

Export Citation Format

Share Document