scholarly journals Identification of Wheat Yellow Rust Using Spectral and Texture Features of Hyperspectral Images

2020 ◽  
Vol 12 (9) ◽  
pp. 1419 ◽  
Author(s):  
Anting Guo ◽  
Wenjiang Huang ◽  
Huichun Ye ◽  
Yingying Dong ◽  
Huiqin Ma ◽  
...  

Wheat yellow rust is one of the most destructive diseases in wheat production and significantly affects wheat quality and yield. Accurate and non-destructive identification of yellow rust is critical to wheat production management. Hyperspectral imaging technology has proven to be effective in identifying plant diseases. We investigated the feasibility of identifying yellow rust on wheat leaves using spectral features and textural features (TFs) of hyperspectral images. First, the hyperspectral images were preprocessed, and healthy and yellow rust-infected samples were obtained by creating regions of interest. Second, the extraction of spectral reflectance characteristics and vegetation indices (VIs) were performed from the preprocessed hyperspectral images, and the TFs were extracted using the grey-level co-occurrence matrix from the images transformed by principal component analysis. Third, the successive projections algorithm was employed to choose the optimum wavebands (OWs), and correlation-based feature selection was employed to select the optimal VIs and TFs (those most sensitive to yellow rust and having minimal redundancy between features). Finally, identification models of wheat yellow rust were established using a support vector machine and different features. Six OWs (538, 598, 689, 702, 751, and 895 nm), four VIs (nitrogen reflectance index, photochemical reflectance index, greenness index, and anthocyanin reflectance index), and four TFs (correlation 1, correlation 2, entropy 2, and second moment 3) were selected. The identification models based on the OWs, VIs, and TFs provided overall accuracies of 83.3%, 89.5%, and 86.5%, respectively. The TF results were especially encouraging. The models with the combination of spectral features and TFs exhibited better performance than those using the spectral features or TFs alone. The accuracies of the models with the combined features (OWs and TFs, Vis, and TFs) were 90.6% and 95.8%, respectively. These values were 7.3% and 6.3% higher, respectively, than those of the models using only the OWs or VIs. The model with the combined feature (VIs and TFs) had the highest accuracy (95.8%) and was used to map the yellow rust lesions on wheat leaves with different damage levels. The results showed that the yellow rust lesions on the leaves could be identified accurately. Overall, the combination of spectral features and TFs of hyperspectral images significantly improved the identification accuracy of wheat yellow rust.

Plants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 936 ◽  
Author(s):  
Jinling Zhao ◽  
Yan Fang ◽  
Guomin Chu ◽  
Hao Yan ◽  
Lei Hu ◽  
...  

Powdery mildew (PM, Blumeria graminis f. sp. tritici) is a devastating disease for wheat growth and production. It is highly meaningful that the disease severities can be objectively and accurately identified by image visualization technology. In this study, an integral method was proposed based on a hyperspectral imaging dataset and machine learning algorithms. The disease severities of wheat leaves infected with PM were quantitatively identified based on hyperspectral images and image segmentation techniques. A technical procedure was proposed to perform the identification and evaluation of leaf-scale wheat PM, specifically including three primary steps of the acquisition and preprocessing of hyperspectral images, the selection of characteristic bands, and model construction. Firstly, three-dimensional reduction algorithms, namely principal component analysis (PCA), random forest (RF), and the successive projections algorithm (SPA), were comparatively used to select the bands that were most sensitive to PM. Then, three diagnosis models were constructed by a support vector machine (SVM), RF, and a probabilistic neural network (PNN). Finally, the best model was selected by comparing the overall accuracies. The results show that the SVM model constructed by PCA dimensionality reduction had the best result, and the classification accuracy reached 93.33% by a cross-validation method. There was an obvious improvement of the identification accuracy with the model, which achieved an 88.00% accuracy derived from the original hyperspectral images. This study can provide a reference for accurately estimating the disease severity of leaf-scale wheat PM and other plant diseases by non-contact measurement technology.


Sensors ◽  
2019 ◽  
Vol 19 (23) ◽  
pp. 5225 ◽  
Author(s):  
Shaolong Zhu ◽  
Maoni Chao ◽  
Jinyu Zhang ◽  
Xinjuan Xu ◽  
Puwen Song ◽  
...  

Hyperspectral imaging is a nondestructive testing technology that integrates spectroscopy and iconology technologies, which enables us to quickly obtain both internal and external information of objects and identify crop seed varieties. First, the hyperspectral images of ten soybean seed varieties were collected and the reflectance was obtained. Savitzky-Golay smoothing (SG), first derivative (FD), standard normal variate (SNV), fast Fourier transform (FFT), Hilbert transform (HT), and multiplicative scatter correction (MSC) spectral reflectance pretreatment methods were used. Then, the feature wavelengths and feature information of the pretreated spectral reflectance data were extracted using competitive adaptive reweighted sampling (CARS), the successive projections algorithm (SPA), and principal component analysis (PCA). Finally, 5 classifiers, Bayes, support vector machine (SVM), k-nearest neighbor (KNN), ensemble learning (EL), and artificial neural network (ANN), were used to identify seed varieties. The results showed that MSC-CARS-EL had the highest accuracy among the 90 combinations, with training set, test set, and 5-fold cross-validation accuracies of 100%, 100%, and 99.8%, respectively. Moreover, the contribution of spectral pretreatment to discrimination accuracy was higher than those of feature extraction and classifier selection. Pretreatment methods determined the range of the identification accuracy, feature-selective methods and classifiers only changed within this range. The experimental results provide a good reference for the identification of other crop seed varieties.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 952 ◽  
Author(s):  
Zhifeng Yao ◽  
Yu Lei ◽  
Dongjian He

Wheat stripe rust is one of the most important and devastating diseases in wheat production. In order to detect wheat stripe rust at an early stage, a visual detection method based on hyperspectral imaging is proposed in this paper. Hyperspectral images of wheat leaves infected by stripe rust for 15 consecutive days were collected, and their corresponding chlorophyll content (SPAD value) were measured using a handheld SPAD-502 chlorophyll meter. The spectral reflectance of the samples were then extracted from the hyperspectral images, using image segmentation based on a leaf mask. The effective wavebands were selected by the loadings of principal component analysis (PCA-loadings) and the successive projections algorithm (SPA). Next, the regression model of the SPAD values in wheat leaves was established, based on the back propagation neural network (BPNN), using the full spectra and the selected effective wavelengths as inputs, respectively. The results showed that the PCA-loadings–BPNN model had the best performance, which modeling accuracy (RC2) and validation accuracy (RP2) were 0.921 and 0.918, respectively, and the RPD was 3.363. The number of effective wavelengths extracted by this model accounted for only 3.12% of the total number of wavelengths, thus simplifying the models and improving the rate of operation greatly. Finally, the optimal models were used to estimate the SPAD of each pixel within the wheat leaf images, to generate spatial distribution maps of chlorophyll content. The visualized distribution map showed that wheat leaves infected by stripe rust could be identified six days after inoculation, and at least three days before the appearance of visible symptoms, which provides a new method for the early detection of wheat stripe rust.


2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Caihong Li ◽  
Lingling Li ◽  
Yuan Wu ◽  
Min Lu ◽  
Yi Yang ◽  
...  

Near-infrared (NIR) spectra of apple samples were submitted in this paper to principal component analysis (PCA) and successive projections algorithm (SPA) to conduct variable selection. Three pattern recognition methods, backpropagation neural network (BPNN), support vector machine (SVM), and extreme learning machine (ELM), were applied to establish models for distinguishing apples of different varieties and geographical origins. Experimental results show that ELM models performed better on identifying apple variety and geographical origin than others. Especially, the SPA-ELM model could reach 98.33% identification accuracy on the calibration set and 96.67% on the prediction set. This study suggests that it is feasible to identify apple variety and cultivation region by using NIR spectroscopy.


2018 ◽  
Vol 62 (5) ◽  
pp. 558-562
Author(s):  
Uchaev D.V. ◽  
◽  
Uchaev Dm.V. ◽  
Malinnikov V.A. ◽  
◽  
...  

2021 ◽  
Vol 5 (2) ◽  
Author(s):  
Alexander Knyshov ◽  
Samantha Hoang ◽  
Christiane Weirauch

Abstract Automated insect identification systems have been explored for more than two decades but have only recently started to take advantage of powerful and versatile convolutional neural networks (CNNs). While typical CNN applications still require large training image datasets with hundreds of images per taxon, pretrained CNNs recently have been shown to be highly accurate, while being trained on much smaller datasets. We here evaluate the performance of CNN-based machine learning approaches in identifying three curated species-level dorsal habitus datasets for Miridae, the plant bugs. Miridae are of economic importance, but species-level identifications are challenging and typically rely on information other than dorsal habitus (e.g., host plants, locality, genitalic structures). Each dataset contained 2–6 species and 126–246 images in total, with a mean of only 32 images per species for the most difficult dataset. We find that closely related species of plant bugs can be identified with 80–90% accuracy based on their dorsal habitus alone. The pretrained CNN performed 10–20% better than a taxon expert who had access to the same dorsal habitus images. We find that feature extraction protocols (selection and combination of blocks of CNN layers) impact identification accuracy much more than the classifying mechanism (support vector machine and deep neural network classifiers). While our network has much lower accuracy on photographs of live insects (62%), overall results confirm that a pretrained CNN can be straightforwardly adapted to collection-based images for a new taxonomic group and successfully extract relevant features to classify insect species.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 742
Author(s):  
Canh Nguyen ◽  
Vasit Sagan ◽  
Matthew Maimaitiyiming ◽  
Maitiniyazi Maimaitijiang ◽  
Sourav Bhadra ◽  
...  

Early detection of grapevine viral diseases is critical for early interventions in order to prevent the disease from spreading to the entire vineyard. Hyperspectral remote sensing can potentially detect and quantify viral diseases in a nondestructive manner. This study utilized hyperspectral imagery at the plant level to identify and classify grapevines inoculated with the newly discovered DNA virus grapevine vein-clearing virus (GVCV) at the early asymptomatic stages. An experiment was set up at a test site at South Farm Research Center, Columbia, MO, USA (38.92 N, −92.28 W), with two grapevine groups, namely healthy and GVCV-infected, while other conditions were controlled. Images of each vine were captured by a SPECIM IQ 400–1000 nm hyperspectral sensor (Oulu, Finland). Hyperspectral images were calibrated and preprocessed to retain only grapevine pixels. A statistical approach was employed to discriminate two reflectance spectra patterns between healthy and GVCV vines. Disease-centric vegetation indices (VIs) were established and explored in terms of their importance to the classification power. Pixel-wise (spectral features) classification was performed in parallel with image-wise (joint spatial–spectral features) classification within a framework involving deep learning architectures and traditional machine learning. The results showed that: (1) the discriminative wavelength regions included the 900–940 nm range in the near-infrared (NIR) region in vines 30 days after sowing (DAS) and the entire visual (VIS) region of 400–700 nm in vines 90 DAS; (2) the normalized pheophytization index (NPQI), fluorescence ratio index 1 (FRI1), plant senescence reflectance index (PSRI), anthocyanin index (AntGitelson), and water stress and canopy temperature (WSCT) measures were the most discriminative indices; (3) the support vector machine (SVM) was effective in VI-wise classification with smaller feature spaces, while the RF classifier performed better in pixel-wise and image-wise classification with larger feature spaces; and (4) the automated 3D convolutional neural network (3D-CNN) feature extractor provided promising results over the 2D convolutional neural network (2D-CNN) in learning features from hyperspectral data cubes with a limited number of samples.


2020 ◽  
Author(s):  
Eleonora De Filippi ◽  
Mara Wolter ◽  
Bruno Melo ◽  
Carlos J. Tierra-Criollo ◽  
Tiago Bortolini ◽  
...  

AbstractDuring the last decades, neurofeedback training for emotional self-regulation has received significant attention from both the scientific and clinical communities. However, most studies have focused on broader emotional states such as “negative vs. positive”, primarily due to our poor understanding of the functional anatomy of more complex emotions at the electrophysiological level. Our proof-of-concept study aims at investigating the feasibility of classifying two complex emotions that have been implicated in mental health, namely tenderness and anguish, using features extracted from the electroencephalogram (EEG) signal in healthy participants. Electrophysiological data were recorded from fourteen participants during a block-designed experiment consisting of emotional self-induction trials combined with a multimodal virtual scenario. For the within-subject classification, the linear Support Vector Machine was trained with two sets of samples: random cross-validation of the sliding windows of all trials; and 2) strategic cross-validation, assigning all the windows of one trial to the same fold. Spectral features, together with the frontal-alpha asymmetry, were extracted using Complex Morlet Wavelet analysis. Classification results with these features showed an accuracy of 79.3% on average when doing random cross-validation, and 73.3% when applying strategic cross-validation. We extracted a second set of features from the amplitude time-series correlation analysis, which significantly enhanced random cross-validation accuracy while showing similar performance to spectral features when doing strategic cross-validation. These results suggest that complex emotions show distinct electrophysiological correlates, which paves the way for future EEG-based, real-time neurofeedback training of complex emotional states.Significance statementThere is still little understanding about the correlates of high-order emotions (i.e., anguish and tenderness) in the physiological signals recorded with the EEG. Most studies have investigated emotions using functional magnetic resonance imaging (fMRI), including the real-time application in neurofeedback training. However, concerning the therapeutic application, EEG is a more suitable tool with regards to costs and practicability. Therefore, our proof-of-concept study aims at establishing a method for classifying complex emotions that can be later used for EEG-based neurofeedback on emotion regulation. We recorded EEG signals during a multimodal, near-immersive emotion-elicitation experiment. Results demonstrate that intraindividual classification of discrete emotions with features extracted from the EEG is feasible and may be implemented in real-time to enable neurofeedback.


Sign in / Sign up

Export Citation Format

Share Document