scholarly journals A Random Forest-Based Data Fusion Method for Obtaining All-Weather Land Surface Temperature with High Spatial Resolution

2021 ◽  
Vol 13 (11) ◽  
pp. 2211
Author(s):  
Shuo Xu ◽  
Jie Cheng ◽  
Quan Zhang

Land surface temperature (LST) is an important parameter for mirroring the water–heat exchange and balance on the Earth’s surface. Passive microwave (PMW) LST can make up for the lack of thermal infrared (TIR) LST caused by cloud contamination, but its resolution is relatively low. In this study, we developed a TIR and PWM LST fusion method on based the random forest (RF) machine learning algorithm to obtain the all-weather LST with high spatial resolution. Since LST is closely related to land cover (LC) types, terrain, vegetation conditions, moisture condition, and solar radiation, these variables were selected as candidate auxiliary variables to establish the best model to obtain the fusion results of mainland China during 2010. In general, the fusion LST had higher spatial integrity than the MODIS LST and higher accuracy than downscaled AMSR-E LST. Additionally, the magnitude of LST data in the fusion results was consistent with the general spatiotemporal variations of LST. Compared with in situ observations, the RMSE of clear-sky fused LST and cloudy-sky fused LST were 2.12–4.50 K and 3.45–4.89 K, respectively. Combining the RF method and the DINEOF method, a complete all-weather LST with a spatial resolution of 0.01° can be obtained.

2020 ◽  
Vol 12 (9) ◽  
pp. 1471 ◽  
Author(s):  
Sofia L. Ermida ◽  
Patrícia Soares ◽  
Vasco Mantas ◽  
Frank-M. Göttsche ◽  
Isabel F. Trigo

Land Surface Temperature (LST) is increasingly important for various studies assessing land surface conditions, e.g., studies of urban climate, evapotranspiration, and vegetation stress. The Landsat series of satellites have the potential to provide LST estimates at a high spatial resolution, which is particularly appropriate for local or small-scale studies. Numerous studies have proposed LST retrieval algorithms for the Landsat series, and some datasets are available online. However, those datasets generally require the users to be able to handle large volumes of data. Google Earth Engine (GEE) is an online platform created to allow remote sensing users to easily perform big data analyses without increasing the demand for local computing resources. However, high spatial resolution LST datasets are currently not available in GEE. Here we provide a code repository that allows computing LSTs from Landsat 4, 5, 7, and 8 within GEE. The code may be used freely by users for computing Landsat LST as part of any analysis within GEE.


2019 ◽  
Vol 11 (11) ◽  
pp. 1319 ◽  
Author(s):  
Paulina Bartkowiak ◽  
Mariapina Castelli ◽  
Claudia Notarnicola

In this study, we evaluated three different downscaling approaches to enhance spatial resolution of thermal imagery over Alpine vegetated areas. Due to the topographical and land-cover complexity and to the sparse distribution of meteorological stations in the region, the remotely-sensed land surface temperature (LST) at regional scale is of major area of interest for environmental applications. Even though the Moderate Resolution Imaging Spectroradiometer (MODIS) LST fills the gap regarding high temporal resolution and length of the time-series, its spatial resolution is not adequate for mountainous areas. Given this limitation, random forest algorithm for downscaling LST to 250 m spatial resolution was evaluated. This study exploits daily MODIS LST with a spatial resolution of 1 km to obtain sub-pixel information at 250 m spatial resolution. The nonlinear relationship between coarse resolution MODIS LST (CR) and fine resolution (FR) explanatory variables was performed by building three different models including: (i) all pixels (BM), (ii) only pixels with more than 90% of vegetation content (EM1) and (iii) only pixels with 75% threshold of homogeneity for vegetated land-cover classes (EM2). We considered normalized difference vegetation index (NDVI) and digital elevation model (DEM) as predictors. The performances of the thermal downscaling methods were evaluated by the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE) between the downscaled dataset and Landsat LST. Validation indicated that the error values for vegetation fraction (EM1, EM2) were smaller than for basic modelling (BM). BM model determined averaged RMSE of 2.3 K and MAE of 1.8 K. Enhanced methods (EM1 and EM2) gave slightly better results yielding 2.2 K and 1.7 K for RMSE and MAE, respectively. In contrast to the EMs, BM showed a reduction of 22% and 18% of RMSE and MAE respectively with regard to Landsat and the original MODIS LST. Despite some limitations, mainly due to cloud contamination effect and coarse resolution pixel heterogeneity, random forest downscaling exhibits a large potential for producing improved LST maps.


2018 ◽  
Vol 6 (1) ◽  
pp. 77-99
Author(s):  
Parisa Mohammadizadeh ◽  
Saeid Hamzeh ◽  
Majid Kiavarz ◽  
Ali Darvishi Blorani ◽  
◽  
...  

2022 ◽  
Vol 14 (2) ◽  
pp. 279
Author(s):  
Qiong Wu ◽  
Zhaoyi Li ◽  
Changbao Yang ◽  
Hongqing Li ◽  
Liwei Gong ◽  
...  

Urbanization processes greatly change urban landscape patterns and the urban thermal environment. Significant multi-scale correlation exists between the land surface temperature (LST) and landscape pattern. Compared with traditional linear regression methods, the regression model based on random forest has the advantages of higher accuracy and better learning ability, and can remove the linear correlation between regression features. Taking Beijing’s metropolitan area as an example, this paper conducted multi-scale relationship analysis between 3D landscape patterns and LST using Pearson Correlation Coefficient (PCC), Multiple Linear Regression and Random Forest Regression (RFR). The results indicated that LST was relatively high in the central area of Beijing, and decreased from the center to the surrounding areas. The interpretation effect of 3D landscape metrics on LST was more obvious than that of the 2D landscape metrics, and 3D landscape diversity and evenness played more important roles than the other metrics in the change of LST. The multi-scale relationship between LST and the landscape pattern was discovered in the fourth ring road of Beijing, the effect of the extent of change on the landscape pattern is greater than that of the grain size change, and the interpretation effect and correlation of landscape metrics on LST increase with the increase in the rectangle size. Impervious surfaces significantly increased the LST, while the impervious surfaces located at low building areas were more likely to increase LST than those located at tall building areas. It seems that increasing the distance between buildings to improve the rate of energy exchange between urban and rural areas can effectively decrease LST. Vegetation and water can effectively reduce LST, but large, clustered and irregularly shaped patches have a better effect on land surface cooling than small and discrete patches. The Coefficients of Rectangle Variation (CORV) power function fitting results of landscape metrics showed that the optimal rectangle size for studying the relationship between the 3D landscape pattern and LST is about 700 m. Our study is useful for future urban planning and provides references to mitigate the daytime urban heat island (UHI) effect.


2020 ◽  
Vol 12 (24) ◽  
pp. 4098
Author(s):  
Weixiao Han ◽  
Chunlin Huang ◽  
Hongtao Duan ◽  
Juan Gu ◽  
Jinliang Hou

Lake phenology is essential for understanding the lake freeze-thaw cycle effects on terrestrial hydrological processes. The Qinghai-Tibetan Plateau (QTP) has the most extensive ice reserve outside of the Arctic and Antarctic poles and is a sensitive indicator of global climate changes. Qinghai Lake, the largest lake in the QTP, plays a critical role in climate change. The freeze-thaw cycles of lakes were studied using daily Moderate Resolution Imaging Spectroradiometer (MODIS) data ranging from 2000–2018 in the Google Earth Engine (GEE) platform. Surface water/ice area, coverage, critical dates, surface water, and ice cover duration were extracted. Random forest (RF) was applied with a classifier accuracy of 0.9965 and a validation accuracy of 0.8072. Compared with six common water indexes (tasseled cap wetness (TCW), normalized difference water index (NDWI), modified normalized difference water index (MNDWI), automated water extraction index (AWEI), water index 2015 (WI2015) and multiband water index (MBWI)) and ice threshold value methods, the critical freeze-up start (FUS), freeze-up end (FUE), break-up start (BUS), and break-up end (BUE) dates were extracted by RF and validated by visual interpretation. The results showed an R2 of 0.99, RMSE of 3.81 days, FUS and BUS overestimations of 2.50 days, and FUE and BUE underestimations of 0.85 days. RF performed well for lake freeze-thaw cycles. From 2000 to 2018, the FUS and FUE dates were delayed by 11.21 and 8.21 days, respectively, and the BUS and BUE dates were 8.59 and 1.26 days early, respectively. Two novel key indicators, namely date of the first negative land surface temperature (DFNLST) and date of the first positive land surface temperature (DFPLST), were proposed to comprehensively delineate lake phenology: DFNLST was approximately 37 days before FUS, and DFPLST was approximately 20 days before BUS, revealing that the first negative and first positive land surface temperatures occur increasingly earlier.


Sign in / Sign up

Export Citation Format

Share Document