scholarly journals BFAST Lite: A Lightweight Break Detection Method for Time Series Analysis

2021 ◽  
Vol 13 (16) ◽  
pp. 3308 ◽  
Author(s):  
Dainius Masiliūnas ◽  
Nandin-Erdene Tsendbazar ◽  
Martin Herold ◽  
Jan Verbesselt

BFAST Lite is a newly proposed unsupervised time series change detection algorithm that is derived from the original BFAST (Breaks for Additive Season and Trend) algorithm, focusing on improvements to speed and flexibility. The goal of the BFAST Lite algorithm is to aid the upscaling of BFAST for global land cover change detection. In this paper, we introduce and describe the algorithm and then compare its accuracy, speed and features with other algorithms in the BFAST family: BFAST and BFAST Monitor. We tested the three algorithms on an eleven-year-long time series of MODIS imagery, using a global reference dataset with over 30,000 point locations of land cover change to validate the results. We set the parameters of all algorithms to comparable values and analysed the algorithm accuracy over a range of time series ordered by the certainty of that the input time series has at least one abrupt break. To compare the algorithm accuracy, we analysed the time difference between the detected breaks and the reference data to obtain a confusion matrix and derived statistics from it. Lastly, we compared the processing speed of the algorithms using both the original R code as well as an optimised C++ implementation for each algorithm. The results showed that BFAST Lite has similar accuracy to BFAST but is significantly faster, more flexible and can handle missing values. Its ability to use alternative information criteria to select the number of breaks resulted in the best balance between the user’s and producer’s accuracy of detected changes of all the tested algorithms. Therefore, BFAST Lite is a useful addition to the BFAST family of unsupervised time series break detection algorithms, which can be used as an aid in narrowing down areas with changes for updating land cover maps, detecting disturbances or estimating magnitudes and rates of change over large areas.

2018 ◽  
Vol 10 (8) ◽  
pp. 1251 ◽  
Author(s):  
Boyu Liu ◽  
Jun Chen ◽  
Jiage Chen ◽  
Weiwei Zhang

Spectral and NDVI values have been used to calculate the change magnitudes of land cover, but may result in many pseudo-changes because of inter-class variance. Recently, the shape information of spectral or NDVI curves such as direction, angle, gradient, or other mathematical indicators have been used to improve the accuracy of land cover change detection. However, these measurements, in terms of the single shape features, can hardly capture the complete trends of curves affected by the unsynchronized phenology. Therefore, the calculated change magnitudes are indistinct such that changes and no-changes have a low contrast. This problem has prevented traditional change detection methods from achieving a higher accuracy using bi-temporal images or NDVI time series. In this paper, a multiple shape parameters-based change detection method is proposed by combining the spectral correlation operator and the shape features of NDVI temporal curves (phase angle cumulant, baseline cumulant, relative cumulation rate, and zero-crossing rate). The change magnitude is derived by integrating all the inter-annual differences of these shape parameters. The change regions are discriminated by an automated threshold selection method known as histogram concavity analysis. The results showed that the mean differences in the change magnitudes of the proposed method between 2100 changed and 2523 unchanged pixels was 32%, the overall accuracy was approximately 88%, and the kappa coefficient was 0.76. A comparative analysis was conducted with bi-temporal image-based methods and NDVI time series-based methods, and we demonstrate that the proposed method is more effective and robust than traditional methods in achieving high-contrast change magnitudes and accuracy.


2014 ◽  
Vol 6 (7) ◽  
pp. 5976-5994 ◽  
Author(s):  
Sebastian Aleksandrowicz ◽  
Konrad Turlej ◽  
Stanisław Lewiński ◽  
Zbigniew Bochenek

2018 ◽  
Vol 11 ◽  
pp. 117862211775160 ◽  
Author(s):  
Gebiaw T Ayele ◽  
Aschalew K Tebeje ◽  
Solomon S Demissie ◽  
Mulugeta A Belete ◽  
Mengistu A Jemberrie ◽  
...  

Land use planners require up-to-date and spatially accurate time series land resources information and changing pattern for future management. As a result, assessing the status of land cover change due to population growth and arable expansion, land degradation and poor resource management, partial implementation of policy strategies, and poorly planned infrastructural development is essential. Thus, the objective of the study was to quantify the spatiotemporal dynamics of land use land cover change between 1995 and 2014 using 5 multi-temporal cloud-free Landsat Thematic Mapper images. The maximum likelihood (ML)-supervised classification technique was applied to create signature classes for significant land cover categories using means and variances of the training data to estimate the probability that a pixel is a member of a class. The final Bayesian ML classification resulted in 12 major land cover units, and the spatiotemporal change was quantified using post-classification and statistical change detection techniques. For a period of 20 years, there was a continuously increasing demand for arable areas, which can be represented by an exponential growth model. Excepting the year 2009, the built-up area has shown a steady increase due to population growth and its need for infrastructure development. There was nearly a constant trend for water bodies with a change in slope significantly less than +0.01%. The 2014 land cover change statistics revealed that the area was mainly covered by cultivated, wood, bush, shrub, grass, and forest land mapping units accounting nearly 63%, 12%, 8%, 6%, 4%, and 2% of the total, respectively. Land cover change with agro-climatic zones, soil types, and slope classes was common in most part of the area and the conversion of grazing land into plantation trees and closure area development were major changes in the past 20 years.


Sign in / Sign up

Export Citation Format

Share Document