scholarly journals Micro-Motion Parameter Extraction for Ballistic Missile with Wideband Radar Using Improved Ensemble EMD Method

2021 ◽  
Vol 13 (17) ◽  
pp. 3545
Author(s):  
Nannan Zhu ◽  
Jun Hu ◽  
Shiyou Xu ◽  
Wenzhen Wu ◽  
Yunfan Zhang ◽  
...  

Micro-motion parameters extraction is crucial in recognizing ballistic missiles with a wideband radar. It is known that the phase-derived range (PDR) method can provide a sub-wavelength level accuracy. However, it is sensitive and unstable when the signal-to-noise ratio (SNR) is low. In this paper, an improved PDR method is proposed to reduce the impacts of low SNRs. First, the high range resolution profile (HRRP) is divided into a series of segments so that each segment contains a single scattering point. Then, the peak values of each segment are viewed as non-stationary signals, which are further decomposed into a series of intrinsic mode functions (IMFs) with different energy, using the ensemble empirical mode decomposition with the complementary adaptive noise (EEMDCAN) method. In the EEMDCAN decomposition, positive and negative adaptive noise pairs are added to each IMF layer to effectively eliminate the mode-mixing phenomenon that exists in the original empirical mode decomposition (EMD) method. An energy threshold is designed to select proper IMFs to reconstruct the envelop for high estimation accuracy and low noise effects. Finally, the least-square algorithm is used to do the ambiguous phases unwrapping to obtain the micro-curve, which can be further used to estimate the micro-motion parameters of the warhead. Simulation results show that the proposed method performs well with SNR at −5 dB with an accuracy level of sub-wavelength.

2020 ◽  
Vol 36 (6) ◽  
pp. 825-839
Author(s):  
A. Hammami ◽  
A. Hmida ◽  
M. T. Khabou ◽  
F. Chaari ◽  
M. Haddar ◽  
...  

ABSTRACTEmpirical Mode Decomposition (EMD) and its approaches are powerful techniques in signal processing especially for the diagnosis of rotating machinery running in non-stationary regime. We are interested in this paper to the dynamic behavior of a defected one stage gearbox equipped with an elastic coupling and loaded under acyclism regime generated by a combustion engine. Actually, we adopt an approach to the EMD method called Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) as a technique to perform the diagnosis of the studied system. Since the obtained signals are modulated, all obtained Intrinsic Mode Functions (IMFs) are modulated and are processed and shown by the Wigner-Ville distributions (WVD) as well as the spectrum of their envelope in order to detect defects such as cracked tooth defect in the wheel of the spur gearbox and eccentricity defect in the gear.


2013 ◽  
Vol 31 (4) ◽  
pp. 619 ◽  
Author(s):  
Luiz Eduardo Soares Ferreira ◽  
Milton José Porsani ◽  
Michelângelo G. Da Silva ◽  
Giovani Lopes Vasconcelos

ABSTRACT. Seismic processing aims to provide an adequate image of the subsurface geology. During seismic processing, the filtering of signals considered noise is of utmost importance. Among these signals is the surface rolling noise, better known as ground-roll. Ground-roll occurs mainly in land seismic data, masking reflections, and this roll has the following main features: high amplitude, low frequency and low speed. The attenuation of this noise is generally performed through so-called conventional methods using 1-D or 2-D frequency filters in the fk domain. This study uses the empirical mode decomposition (EMD) method for ground-roll attenuation. The EMD method was implemented in the programming language FORTRAN 90 and applied in the time and frequency domains. The application of this method to the processing of land seismic line 204-RL-247 in Tacutu Basin resulted in stacked seismic sections that were of similar or sometimes better quality compared with those obtained using the fk and high-pass filtering methods.Keywords: seismic processing, empirical mode decomposition, seismic data filtering, ground-roll. RESUMO. O processamento sísmico tem como principal objetivo fornecer uma imagem adequada da geologia da subsuperfície. Nas etapas do processamento sísmico a filtragem de sinais considerados como ruídos é de fundamental importância. Dentre esses ruídos encontramos o ruído de rolamento superficial, mais conhecido como ground-roll . O ground-roll ocorre principalmente em dados sísmicos terrestres, mascarando as reflexões e possui como principais características: alta amplitude, baixa frequência e baixa velocidade. A atenuação desse ruído é geralmente realizada através de métodos de filtragem ditos convencionais, que utilizam filtros de frequência 1D ou filtro 2D no domínio fk. Este trabalho utiliza o método de Decomposição em Modos Empíricos (DME) para a atenuação do ground-roll. O método DME foi implementado em linguagem de programação FORTRAN 90, e foi aplicado no domínio do tempo e da frequência. Sua aplicação no processamento da linha sísmica terrestre 204-RL-247 da Bacia do Tacutu gerou como resultados, seções sísmicas empilhadas de qualidade semelhante e por vezes melhor, quando comparadas as obtidas com os métodos de filtragem fk e passa-alta.Palavras-chave: processamento sísmico, decomposição em modos empíricos, filtragem dados sísmicos, atenuação do ground-roll.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Shiqiang Qin ◽  
Qiuping Wang ◽  
Juntao Kang

The output-only modal analysis for bridge structures based on improved empirical mode decomposition (EMD) is investigated in this study. First, a bandwidth restricted EMD is proposed for decomposing nonstationary output measurements with close frequency components. The advantage of bandwidth restricted EMD to standard EMD is illustrated by a numerical simulation. Next, the modal parameters are extracted from intrinsic mode function obtained from the improved EMD by both random decrement technique and stochastic subspace identification. Finally, output-only modal analysis of a railway bridge is presented. The study demonstrates the mode mixing issues of standard EMD can be restrained by introducing bandwidth restricted signal. Further, with the improved EMD method, band-pass filter is no longer needed for separating the closely spaced frequency components. The modal parameters extracted based on the improved EMD method show good agreement with those extracted by conventional modal identification algorithms.


2020 ◽  
Vol 42 (2) ◽  
pp. 57-73
Author(s):  
Suya Han ◽  
Yufeng Zhang ◽  
Keyan Wu ◽  
Bingbing He ◽  
Kexin Zhang ◽  
...  

Complete and accurate separation of harmonic components from the ultrasonic radio frequency (RF) echo signals is essential to improve the quality of harmonic imaging. There are limitations in the existing two commonly used separation methods, that is, the subjectivity for the high-pass filtering (S_HPF) method and motion artifacts for the pulse inversion (S_PI) method. A novel separation method called S_CEEMDAN, based on the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) algorithm, is proposed to adaptively separate the second harmonic components for ultrasound tissue harmonic imaging. First, the ensemble size of the CEEMDAN algorithm is calculated adaptively according to the standard deviation of the added white noise. A set of intrinsic mode functions (IMFs) is then obtained by the CEEMDAN algorithm from the ultrasonic RF echo signals. According to the IMF spectra, the IMFs that contain both fundamental and harmonic components are further decomposed. The separation process is performed until all the obtained IMFs have been divided into either fundamental or harmonic categories. Finally, the fundamental and harmonic RF echo signals are obtained from the accumulations of signals from these two categories, respectively. In simulation experiments based on CREANUIS, the S_CEEMDAN-based results are similar to the S_HPF-based results, but better than the S_PI-based results. For the dynamic carotid artery measurements, the contrasts, contrast-to-noise ratios (CNRs), and tissue-to-clutter ratios (TCRs) of the harmonic images based on the S_CEEMDAN are averagely increased by 31.43% and 50.82%, 18.96% and 10.83%, as well as 34.23% and 44.18%, respectively, compared with those based on the S_HPF and S_PI methods. In conclusion, the S_CEEMDAN method provides improved harmonic images owing to its good adaptivity and lower motion artifacts, and is thus a potential alternative to the current methods for ultrasonic harmonic imaging.


Sign in / Sign up

Export Citation Format

Share Document