scholarly journals Drone SAR Image Compression Based on Block Adaptive Compressive Sensing

2021 ◽  
Vol 13 (19) ◽  
pp. 3947
Author(s):  
Jihoon Choi ◽  
Wookyung Lee

In this paper, an adaptive block compressive sensing (BCS) method is proposed for compression of synthetic aperture radar (SAR) images. The proposed method enhances the compression efficiency by dividing the magnitude of the entire SAR image into multiple blocks and subsampling individual blocks with different compression ratios depending on the sparsity of coefficients in the discrete wavelet transform domain. Especially, a new algorithm is devised that selects the best block measurement matrix from a predetermined codebook to reduce the side information about measurement matrices transferred from the remote sensing node to the ground station. Through some modification of the iterative thresholding algorithm, a new clustered BCS recovery method is proposed that classifies the blocks into multiple clusters according to the compression ratio and iteratively reconstructs the SAR image from the received compressed data. Since the blocks in the same cluster are concurrently reconstructed using the same measurement matrix, the proposed structure mitigates the increase in computational complexity when adopting multiple measurement matrices. Using existing SAR images and experimental data obtained by self-made drone SAR and vehicular SAR systems, it is shown that the proposed scheme provides a good tradeoff between the peak signal-to-noise ratio and the computational load compared to conventional BCS-based compression techniques.

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7283
Author(s):  
Seongwook Lee ◽  
Yunho Jung ◽  
Myeongjin Lee ◽  
Wookyung Lee

In this paper, we propose a method for reconstructing synthetic aperture radar (SAR) images by applying a compressive sensing (CS) technique to sparsely acquired radar sensor data. In general, SAR image reconstruction algorithms require radar sensor data acquired at regular spatial intervals. However, when the speed of the radar-equipped platform is not constant, it is difficult to consistently perform regular data acquisitions. Therefore, we used the CS-based signal recovery method to efficiently reconstruct SAR images even when regular data acquisition was not performed. In the proposed method, we used the l1-norm minimization to overcome the non-uniform data acquisition problem, which replaced the Fourier transform and inverse Fourier transform in the conventional SAR image reconstruction method. In addition, to reduce the phase distortion of the recovered signal, the proposed method was applied to each of the in-phase and quadrature components of the acquired radar sensor data. To evaluate the performance of the proposed method, we conducted experiments using an automotive frequency-modulated continuous wave radar sensor. Then, the quality of the SAR image reconstructed with data acquired at regular intervals was compared with the quality of images reconstructed with data acquired at non-uniform intervals. Using the proposed method, even if only 70% of the regularly acquired radar sensor data was used, a SAR image having a correlation of 0.83 could be reconstructed.


Author(s):  
G. Kowsalya ◽  
H. A. Christinal ◽  
D. A. Chandy ◽  
S. Jebasingh ◽  
C. Bajaj

Compressive sensing of images is based on three key components namely sparse representation, construction of measurement matrix and reconstruction of images. The visual quality of reconstructed image is prime important in medical images. We apply Discrete Cosine Transform (DCT) for sparse representation of medical images. This paper focuses on the analysis of measurement matrices on compressive sensing of MRI images. In this work, the Gaussian and Bernoulli type of random matrices are considered as measurement matrix. The compressed images are reconstructed using Basis Pursuit algorithm. Peak-signal-to noise ratio and reconstruction time are the metrics taken for evaluating the performance of measurement matrices towards compressive sensing of medical images.


2018 ◽  
Vol 24 (4) ◽  
pp. 271-287 ◽  
Author(s):  
Debora Chan ◽  
Andrea Rey ◽  
Juliana Gambini ◽  
Alejandro C. Frery

Abstract Synthetic Aperture Radar (SAR) images are widely used in several environmental applications because they provide information which cannot be obtained with other sensors. The {\mathcal{G}_{I}^{0}} distribution is an important model for these images because of its flexibility (it provides a suitable way for modeling areas with different degrees of texture, reflectivity and signal-to-noise ratio) and tractability (it is closely related to the Snedekor-F, Pareto Type II, and Gamma distributions). Simulated data are important for devising tools for SAR image processing, analysis and interpretation, among other applications. We compare four ways for sampling data that follow the {\mathcal{G}_{I}^{0}} distribution, using several criteria for assessing the quality of the generated data and the consumed processing time. The experiments are performed running codes in four different programming languages. The experimental results indicate that although there is no overall best method in all the considered programming languages, it is possible to make specific recommendations for each one.


Author(s):  
S. Thabasu Kannan ◽  
S. Azhagu Senthil

Now-a-days watermarking plays a pivotal role in most of the industries for providing security to their own as well as hired or leased data. This paper its main aim is to study the multiresolution watermarking algorithms and also choosing the effective and efficient one for improving the resistance in data compression. Computational savings from such a multiresolution watermarking framework is obvious. The multiresolutional property makes our watermarking scheme robust to image/video down sampling operation by a power of two in either space or time. There is no common framework for multiresolutional digital watermarking of both images and video. A multiresolution watermarking based on the wavelet transformation is selected in each frequency band of the Discrete Wavelet Transform (DWT) domain and therefore it can resist the destruction of image processing.   The rapid development of Internet introduces a new set of challenging problems regarding security. One of the most significant problems is to prevent unauthorized copying of digital production from distribution. Digital watermarking has provided a powerful way to claim intellectual protection. We proposed an idea for enhancing the robustness of extracted watermarks. Watermark can be treated as a transmitted signal, while the destruction from attackers is regarded as a noisy distortion in channel.  For the implementation, we have used minimum nine coordinate positions. The watermarking algorithms to be taken for this study are Corvi algorithm and Wang algorithm. In all graph, we have plotted X axis as peak signal to noise ratio (PSNR) and y axis as Correlation with original watermark. The threshold value ά is set to 5. The result is smaller than the threshold value then it is feasible, otherwise it is not.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1643
Author(s):  
Ming Liu ◽  
Shichao Chen ◽  
Fugang Lu ◽  
Mengdao Xing ◽  
Jingbiao Wei

For target detection in complex scenes of synthetic aperture radar (SAR) images, the false alarms in the land areas are hard to eliminate, especially for the ones near the coastline. Focusing on the problem, an algorithm based on the fusion of multiscale superpixel segmentations is proposed in this paper. Firstly, the SAR images are partitioned by using different scales of superpixel segmentation. For the superpixels in each scale, the land-sea segmentation is achieved by judging their statistical properties. Then, the land-sea segmentation results obtained in each scale are combined with the result of the constant false alarm rate (CFAR) detector to eliminate the false alarms located on the land areas of the SAR image. In the end, to enhance the robustness of the proposed algorithm, the detection results obtained in different scales are fused together to realize the final target detection. Experimental results on real SAR images have verified the effectiveness of the proposed algorithm.


2013 ◽  
Vol 12 (1) ◽  
pp. 71-86
Author(s):  
Honglin Huang ◽  
Anamitra Makur

2021 ◽  
Vol 13 (14) ◽  
pp. 2686
Author(s):  
Di Wei ◽  
Yuang Du ◽  
Lan Du ◽  
Lu Li

The existing Synthetic Aperture Radar (SAR) image target detection methods based on convolutional neural networks (CNNs) have achieved remarkable performance, but these methods require a large number of target-level labeled training samples to train the network. Moreover, some clutter is very similar to targets in SAR images with complex scenes, making the target detection task very difficult. Therefore, a SAR target detection network based on a semi-supervised learning and attention mechanism is proposed in this paper. Since the image-level label simply marks whether the image contains the target of interest or not, which is easier to be labeled than the target-level label, the proposed method uses a small number of target-level labeled training samples and a large number of image-level labeled training samples to train the network with a semi-supervised learning algorithm. The proposed network consists of a detection branch and a scene recognition branch with a feature extraction module and an attention module shared between these two branches. The feature extraction module can extract the deep features of the input SAR images, and the attention module can guide the network to focus on the target of interest while suppressing the clutter. During the semi-supervised learning process, the target-level labeled training samples will pass through the detection branch, while the image-level labeled training samples will pass through the scene recognition branch. During the test process, considering the help of global scene information in SAR images for detection, a novel coarse-to-fine detection procedure is proposed. After the coarse scene recognition determining whether the input SAR image contains the target of interest or not, the fine target detection is performed on the image that may contain the target. The experimental results based on the measured SAR dataset demonstrate that the proposed method can achieve better performance than the existing methods.


Sign in / Sign up

Export Citation Format

Share Document