scholarly journals Land Cover and Crop Classification Based on Red Edge Indices Features of GF-6 WFV Time Series Data

2021 ◽  
Vol 13 (22) ◽  
pp. 4522
Author(s):  
Yupeng Kang ◽  
Xinli Hu ◽  
Qingyan Meng ◽  
Youfeng Zou ◽  
Linlin Zhang ◽  
...  

Time series of vegetation indices can be utilized to capture crop phenology information, and have been widely used in land cover and crop classification, phenological feature extraction, and planting structure monitoring. This is of great significance for guiding agricultural production and formulating agricultural policies. According to the characteristics of the GF-6 satellite’s newly-added red edge bands, wide field view and high-frequency imaging, the time series of vegetation indices about multi-temporal GF-6 WFV data are used for the study of land cover and crop classification. In this study, eight time steps of GF-6 WFV data were selected from March to October 2019 in Hengshui City. The normalized difference vegetation index (NDVI) time series and 10 different red edge spectral indices time series were constructed. Then, based on principal component analysis (PCA), using two feature selection and evaluation methods, stepwise discriminant analysis (SDA) and random forest (RF), the red edge vegetation index of normalized difference red edge (NDRE) was selected. Seven different lengths of NDVI, NDRE and NDVI&NDRE time series were reconstructed by the Savizky-Golay (S-G) smoothing algorithm. Finally, an RF classification algorithm was used to analyze the influence of time series length and red edge indices features on land cover and crop classification, and the planting structure and distribution of crops in the study area were obtained. The results show that: (1) Compared with the NDRE red edge time series, the NDVI time series is more conducive to the improvement of the overall classification accuracy of crops, and NDRE can assist NDVI in improving the crop classification accuracy; (2) With the shortening of NDVI and NDRE time series, the accuracy of crop classification is gradually decreased, and the decline is gradually accelerated; and (3) Through the combination of the NDVI and NDRE time series, the accuracy of crop classification with different time series lengths can be improved compared with the single NDVI time series, which is conducive to improving the classification accuracy and timeliness of crops. This study has fully tapped the application potential of the new red edge bands of GF-6 WFV time series data, which can provide references for crop identification and classification of time series data such as NDVI and red edge vegetation index of different lengths. At the same time, it promotes the application of optical satellite data with red edge bands in the field of agricultural remote sensing.

Author(s):  
M. Khosravirad ◽  
M. Omid ◽  
F. Sarmadian ◽  
S. Hosseinpour

Abstract. This study aimed to evaluate the power of various vegetation indices for sugarcane yield modelling in Shoeibeyeh area in Khuzestan province of Iran. Seven indices were extracted from satellite images and were then converted to seven days' time-series via interpolation. To eliminate noise from the time-series data, all of them were reconstructed using the Savitzky-Golay algorithm. Thus seven different time-series of vegetation indices were obtained. The growth profile was drawn via averaging of NDVI time-series data and was divided into three growth intervals. Then the accumulative values of vegetation indices related to first and second periods of growth (from 2004 to 2016 extracted from time-series data) were evaluated by simple linear regression models against the average observed yields efficiency. The result showed the accumulative IAVI (γ = 1.4) vegetation index relative to first period of growth with R2 = 0.66 and RMSE = 3.78 ton/ha and the accumulative NDI vegetation index relative to second period of growth with R2 = 0.66 and RMSE = 3.79 ton/ha and the accumulative NDI vegetation index relative to sum of the first and the second growth periods with R2 = 0.78 and RMSE = 3.09 ton/ha had good agreement with sugarcane stem yield efficiency at the middle of growth and before harvesting season.


2019 ◽  
Vol 11 (24) ◽  
pp. 3023 ◽  
Author(s):  
Shuai Xie ◽  
Liangyun Liu ◽  
Xiao Zhang ◽  
Jiangning Yang ◽  
Xidong Chen ◽  
...  

The Google Earth Engine (GEE) has emerged as an essential cloud-based platform for land-cover classification as it provides massive amounts of multi-source satellite data and high-performance computation service. This paper proposed an automatic land-cover classification method using time-series Landsat data on the GEE cloud-based platform. The Moderate Resolution Imaging Spectroradiometer (MODIS) land-cover products (MCD12Q1.006) with the International Geosphere–Biosphere Program (IGBP) classification scheme were used to provide accurate training samples using the rules of pixel filtering and spectral filtering, which resulted in an overall accuracy (OA) of 99.2%. Two types of spectral–temporal features (percentile composited features and median composited monthly features) generated from all available Landsat Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+) data from the year 2010 ± 1 were used as input features to a Random Forest (RF) classifier for land-cover classification. The results showed that the monthly features outperformed the percentile features, giving an average OA of 80% against 77%. In addition, the monthly features composited using the median outperformed those composited using the maximum Normalized Difference Vegetation Index (NDVI) with an average OA of 80% against 78%. Therefore, the proposed method is able to generate accurate land-cover mapping automatically based on the GEE cloud-based platform, which is promising for regional and global land-cover mapping.


2015 ◽  
Vol 6 (1) ◽  
pp. 29-38 ◽  
Author(s):  
Xuehong Chen ◽  
Dedi Yang ◽  
Jin Chen ◽  
Xin Cao

2011 ◽  
Vol 15 (3) ◽  
pp. 1047-1064 ◽  
Author(s):  
L. Jia ◽  
H. Shang ◽  
G. Hu ◽  
M. Menenti

Abstract. Liquid and solid precipitation is abundant in the high elevation, upper reach of the Heihe River basin in northwestern China. The development of modern irrigation schemes in the middle reach of the basin is taking up an increasing share of fresh water resources, endangering the oasis and traditional irrigation systems in the lower reach. In this study, the response of vegetation in the Ejina Oasis in the lower reach of the Heihe River to the water yield of the upper catchment was analyzed by time series analysis of monthly observations of precipitation in the upper and lower catchment, river streamflow downstream of the modern irrigation schemes and satellite observations of vegetation index. Firstly, remotely sensed NDVI data acquired by Terra-MODIS are used to monitor the vegetation dynamic for a seven years period between 2000 and 2006. Due to cloud-contamination, atmospheric influence and different solar and viewing angles, however, the quality and consistence of time series of remotely sensed NDVI data are degraded. A Fourier Transform method – the Harmonic Analysis of Time Series (HANTS) algorithm – is used to reconstruct cloud- and noise-free NDVI time series data from the Terra-MODIS NDVI dataset. Modification is made on HANTS by adding additional parameters to deal with large data gaps in yearly time series in combination with a Temporal-Similarity-Statistics (TSS) method developed in this study to seek for initial values for the large gap periods. Secondly, the same Fourier Transform method is used to model time series of the vegetation phenology. The reconstructed cloud-free NDVI time series data are used to study the relationship between the water availability (i.e. the local precipitation and upstream water yield) and the evolution of vegetation conditions in Ejina Oasis from 2000 to 2006. Anomalies in precipitation, streamflow, and vegetation index are detected by comparing each year with the average year. The results showed that: the previous year total runoff had a significant relationship with the vegetation growth in Ejina Oasis and that anomalies in the spring monthly runoff of the Heihe River influenced the phenology of vegetation in the entire oasis. Warmer climate expressed by the degree-days showed positive influence on the vegetation phenology in particular during drier years. The time of maximum green-up is uniform throughout the oasis during wetter years, but showed a clear S-N gradient (downstream) during drier years.


Author(s):  
D. Ratha ◽  
D. Mandal ◽  
S. Dey ◽  
A. Bhattacharya ◽  
A. Frery ◽  
...  

Abstract. In this paper, we present two radar vegetation indices for full-pol and compact-pol SAR data, respectively. Both are derived using the notion of a geodesic distance between observation and well-known scattering models available in the literature. While the full-pol version depends on a generalized volume scattering model, the compact-pol version uses the ideal depolariser to model the randomness in the vegetation. We have utilized the RADARSAT Constellation Mission (RCM) time-series data from the SAMPVEX16-MB campaign in the Manitoba region of Canada for comparing and assessing the indices in terms of the change in the biophysical parameters as well. The compact-pol data for comparison is simulated from the full-pol RCM time series. Both the indices show better performance at correlating with biophysical parameters such as Plant Area Index (PAI) and Volumetric Water Content (VWC) for wheat and soybean crops, in comparison to the state-of-art Radar Vegetation Index (RVI) of Kim and van Zyl. These indices are timely for the upcoming release of the data from the RCM, which will provide data in both full and compact-pol modes, aimed at better crop monitoring from space.


Author(s):  
E. Çolak ◽  
M. Chandra ◽  
F. Sunar

Abstract. Recently, the demand for nuclear power plants has been increasing in developing countries in line with global energy demands. Turkey, one of the developing economies, is also making plans for nuclear power generation since 1970. The Sinop Nuclear Power Plant was a planned nuclear plant located in the Turkey's most northern point in an area where 99% of the land is forest, in Sinop Peninsula. If disputes are resolved and its construction continues, the plant is expected to be put into service in 2028. On the other hand, due to the construction of the nuclear power plant, the land cover in and around the plant site has changed, potentially causing major environmental changes. As an example, more than 650000 trees have been cut down so far for the construction of a nuclear power plant, which may have a negative impact on the region's ecological balances by endangering biodiversity and causing ecological damage. The aim of this study is to detect changes in forest areas from the start of nuclear power plant construction through December 2020 using Sentinel 1 SAR and Sentinel 2 optical time series images. For this purpose, different radar and optical vegetation indices such as Modified Radar Vegetation Index (mRVI), Modified Radar Forest Degradation Index (mRFDI), and Normalized Difference Vegetation Index (NDVI) were applied using Google Earth Engine (GEE) Sentinel 1/2 satellite time series for 2015–2020 period. As a result, the indices used were found to yield findings consistent with the reported negative land cover change. In addition, correlation analysis were made between the radar vegetation indices used and a very high negative correlation (−0.99) was found. The annual distributions of the values of the three indices used were statistically evaluated using boxplots.


2019 ◽  
Vol 11 (24) ◽  
pp. 2956
Author(s):  
Marcos C. Hott ◽  
Luis M. T. Carvalho ◽  
Mauro A. H. Antunes ◽  
João C. Resende ◽  
Wadson S. D. Rocha

There is currently a lot of interest in determining the state of Brazilian grasslands. Governmental actions and programs have recently been implemented for grassland recovery in Brazilian states, with the aim of improving production systems and socioeconomic indicators. The aim of this study is to evaluate the vegetative growth, temporal vigor, and long-term scenarios for the grasslands in Zona da Mata, Minas Gerais State, Brazil, by integrating phenological metrics. We used metrics derived from the normalized difference vegetation index (NDVI) time series from moderate resolution imaging spectroradiometer (MODIS) data, which were analyzed in a geographic information system (GIS), using multicriteria analysis, the analytical hierarchy process, and a simplified expert system (ESS). These temporal metrics, i.e., the growth index (GI) for 16-day periods during the growing season; the slope; and the maximum, minimum, and mean for the time series, were integrated to investigate the grassland vegetation conditions and degradation level. The temporal vegetative vigor was successfully described using the rescaled range (R/S statistic) and the Hurst exponent, which, together with the metrics estimated for the full time series, imagery, and field observations, indicated areas undergoing degradation or areas that were inadequately managed (approximately 61.5%). Time series analysis revealed that most grasslands showed low or moderate vegetative vigor over time with long-term persistence due to farming practices associated with burning and overgrazing. A small part of the grasslands showed high and sustainable plant densities (approximately 8.5%). A map legend for grassland management guidelines was developed using the proposed method with remote sensing data, which were applied using GIS software and a field campaign.


2021 ◽  
Author(s):  
Xiaofang Ling ◽  
Ruyin Cao

<p>The Normalized Difference Vegetation Index (NDVI) data provided by the satellite Landsat have rich historical archive data with a spatial resolution of 30 m. However, the Landsat NDVI time-series data are quite discontinuous due to its 16-day revisit cycle, cloud contamination and some other factors. The spatiotemporal data fusion technology has been proposed to reconstruct continuous Landsat NDVI time-series data by blending the MODIS data with the Landsat data. Although a number of spatiotemporal fusion algorithms have been developed during the past decade, most of the existing algorithms usually ignore the effective use of partially cloud-contaminated images. In this study, we presented a new spatiotemporal fusion method, which employed the cloud-free pixels in the partially cloud-contaminated images to improve the performance of MODIS-Landsat data fusion by <strong>C</strong>orrecting the inconsistency between MODIS and Landsat data in <strong>S</strong>patiotemporal <strong>DA</strong>ta <strong>F</strong>usion (called CSDAF). We tested the new method at three sites covered by different vegetation types, including deciduous forests in the Shennongjia Forestry District of China (SNJ), evergreen forests in Southeast Asia (SEA), and the irrigated farmland in the Coleambally irrigated area of Australia (CIA). Two experiments were designed. In experiment I, we first simulated different cloud coverages in cloud-free Landsat images and then used both CSDAF and the recently developed IFSDAF method to restore these “missing” pixels for quantitative assessments. Results showed that CSDAF performed better than IFSDAF by achieving the smaller average Root Mean Square Error (RMSE) values (0.0767 vs. 0.1116) and the larger average Structural SIMilarity index (SSIM) values (0.8169 vs. 0.7180). In experiment II, we simulated the scenario of “inconsistence” between MODIS and Landsat by simulating different levels of noise on MODIS and Landsat data. Results showed that CSDAF was able to reduce the influence of the inconsistence between MODIS and Landsat data on MODIS-Landsat data fusion to some extent. Moreover, CSDAF is simple and can be implemented on the Google Earth Engine. We expect that CSDAF is potentially to be used to reconstruct Landsat NDVI time-series data at the regional and continental scales.</p>


2011 ◽  
Vol 8 (3) ◽  
pp. 507-511 ◽  
Author(s):  
W. Kleynhans ◽  
J. C. Olivier ◽  
K. J. Wessels ◽  
B. P. Salmon ◽  
F. van den Bergh ◽  
...  

2011 ◽  
Vol 8 (11) ◽  
pp. 3359-3373 ◽  
Author(s):  
C. Höpfner ◽  
D. Scherer

Abstract. Vegetation phenology as well as the current variability and dynamics of vegetation and land cover, including its climatic and human drivers, are examined in a region in north-western Morocco that is nearly 22 700 km2 big. A gapless time series of Normalized Differenced Vegetation Index (NDVI) composite raster data from 29 September 2000 to 29 September 2009 is utilised. The data have a spatial resolution of 250 m and were acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. The presented approach allows to compose and to analyse yearly land cover maps in a widely unknown region with scarce validated ground truth data by deriving phenological parameters. Results show that the high temporal resolution of 16 d is sufficient for (a) determining local land cover better than global land cover classifications of Plant Functional Types (PFT) and Global Land Cover 2000 (GLC2000) and (b) for drawing conclusions on vegetation dynamics and its drivers. Areas of stably classified land cover types (i.e. areas that did not change their land cover type) show climatically driven inter- and intra-annual variability with indicated influence of droughts. The presented approach to determine human-driven influence on vegetation dynamics caused by agriculture results in a more than ten times larger area compared with stably classified areas. Change detection based on yearly land cover maps shows a gain of high-productive vegetation (cropland) of about 259.3 km2. Statistically significant inter-annual trends in vegetation dynamics during the last decade could however not be discovered. A sequence of correlations was respectively carried out to extract the most important periods of rainfall responsible for the production of green biomass and for the extent of land cover types. Results show that mean daily precipitation from 1 October to 15 December has high correlation results (max. r2=0.85) on an intra-annual time scale to NDVI percentiles (50 %) of land cover types. Correlation results of mean daily precipitation from 16 September to 15 January and percentage of yearly classified area of each land cover type are medium up to high (max. r2=0.64). In all, an offset of nearly 1.5 months is detected between precipitation rates and NDVI values. High-productive vegetation (cropland) is proved to be mainly rain-fed. We conclude that identification, understanding and knowledge about vegetation phenology, and current variability of vegetation and land cover, as well as prediction methods of land cover change, can be improved using multi-year MODIS NDVI time series data. This study enhances the comprehension of current land surface dynamics and variability of vegetation and land cover in north-western Morocco. It especially offers a quick access when estimating the extent of agricultural lands.


Sign in / Sign up

Export Citation Format

Share Document