A Dual-Frequency Cloud Radar for Observations of Precipitation and Cloud in Tibet: Description and Preliminary Measurements
A new dual-frequency Doppler polarimetric cloud radar (DDCR), working at 35-GHz (Ka-band radar, wavelength: 8.6 mm) and 94-GHz (W-band radar, wavelength: 3.2 mm) frequencies, has been in operation at Yangbajing Observatory on the Tibetan Plateau (China) for more than a year at the time of writing. Calculations and field observations show that the DDCR has a high detection sensitivity of −39.2 dBZ at 10 km and −33 dBZ at 10 km for the 94-GHz radar and 35-GHz radar, respectively. The radar reflectivity measured by the two radars illustrates different characteristics for different types of cloud: for precipitation, the attenuation caused by liquid cloud droplets is obviously more serious for the 94-GHz radar than the 35-GHz radar (the difference reaches 40 dB in some cases), and the 94-GHz radar lost signals due to serious attenuation by heavy rainfall; while for clouds dominated by ice crystals where the attenuation significantly weakens, the 94-GHz radar shows better detection ability than the 35-GHz radar. Observations in the Tibetan region show that the 35-GHz radar is prone to missing cloud near the edge, such as the cloud-top portion, resulting in underestimation of the cloud-top height (CTH). Statistical analysis based on one year of observations shows that the mean CTH measured by the 94-GHz radar in the Tibetan region is approximately 600 m higher than that measured by the 35-GHz radar. The analysis in this paper shows that the DDCR, with its dual-frequency design, provides more valuable information than simpler configurations, and will therefore play an important role in improving our understanding of clouds and precipitation in the Tibetan region.