scholarly journals A Robust Rigid Registration Framework of 3D Indoor Scene Point Clouds Based on RGB-D Information

2021 ◽  
Vol 13 (23) ◽  
pp. 4755
Author(s):  
Saishang Zhong ◽  
Mingqiang Guo ◽  
Ruina Lv ◽  
Jianguo Chen ◽  
Zhong Xie ◽  
...  

Rigid registration of 3D indoor scenes is a fundamental yet vital task in various fields that include remote sensing (e.g., 3D reconstruction of indoor scenes), photogrammetry measurement, geometry modeling, etc. Nevertheless, state-of-the-art registration approaches still have defects when dealing with low-quality indoor scene point clouds derived from consumer-grade RGB-D sensors. The major challenge is accurately extracting correspondences between a pair of low-quality point clouds when they contain considerable noise, outliers, or weak texture features. To solve the problem, we present a point cloud registration framework in view of RGB-D information. First, we propose a point normal filter for effectively removing noise and simultaneously maintaining sharp geometric features and smooth transition regions. Second, we design a correspondence extraction scheme based on a novel descriptor encoding textural and geometry information, which can robustly establish dense correspondences between a pair of low-quality point clouds. Finally, we propose a point-to-plane registration technology via a nonconvex regularizer, which can further diminish the influence of those false correspondences and produce an exact rigid transformation between a pair of point clouds. Compared to existing state-of-the-art techniques, intensive experimental results demonstrate that our registration framework is excellent visually and numerically, especially for dealing with low-quality indoor scenes.

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Mahsa Bank Tavakoli ◽  
Mahdi Orooji ◽  
Mehdi Teimouri ◽  
Ramita Shahabifar

Abstract Objective The most common histopathologic malignant and benign nodules are Adenocarcinoma and Granuloma, respectively, which have different standards of care. In this paper, we propose an automatic framework for the diagnosis of the Adenocarcinomas and the Granulomas in the CT scans of the chest from a private dataset. We use the radiomic features of the nodules and the attached vessel tortuosity for the diagnosis. The private dataset includes 22 CTs for each nodule type, i.e., adenocarcinoma and granuloma. The dataset contains the CTs of the non-smoker patients who are between 30 and 60 years old. To automatically segment the delineated nodule area and the attached vessels area, we apply a morphological-based approach. For distinguishing the malignancy of the segmented nodule, two texture features of the nodule, the curvature Mean and the number of the attached vessels are extracted. Results We compare our framework with the state-of-the-art feature selection methods for differentiating Adenocarcinomas from Granulomas. These methods employ only the shape features of the nodule, the texture features of the nodule, or the torsion features of the attached vessels along with the radiomic features of the nodule. The accuracy of our framework is improved by considering the four selected features.


Signals ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 159-173
Author(s):  
Simone Fontana ◽  
Domenico Giorgio Sorrenti

Probabilistic Point Clouds Registration (PPCR) is an algorithm that, in its multi-iteration version, outperformed state-of-the-art algorithms for local point clouds registration. However, its performances have been tested using a fixed high number of iterations. To be of practical usefulness, we think that the algorithm should decide by itself when to stop, on one hand to avoid an excessive number of iterations and waste computational time, on the other to avoid getting a sub-optimal registration. With this work, we compare different termination criteria on several datasets, and prove that the chosen one produces very good results that are comparable to those obtained using a very large number of iterations, while saving computational time.


Proceedings ◽  
2018 ◽  
Vol 2 (18) ◽  
pp. 1193
Author(s):  
Roi Santos ◽  
Xose Pardo ◽  
Xose Fdez-Vidal

The increasing use of autonomous UAVs inside buildings and around human-made structures demands new accurate and comprehensive representation of their operation environments. Most of the 3D scene abstraction methods use invariant feature point matching, nevertheless some sparse 3D point clouds do not concisely represent the structure of the environment. Likewise, line clouds constructed by short and redundant segments with inaccurate directions limit the understanding of scenes as those that include environments with poor texture, or whose texture resembles a repetitive pattern. The presented approach is based on observation and representation models using the straight line segments, whose resemble the limits of an urban indoor or outdoor environment. The goal of the work is to get a full method based on the matching of lines that provides a complementary approach to state-of-the-art methods when facing 3D scene representation of poor texture environments for future autonomous UAV.


Author(s):  
J. Gehrung ◽  
M. Hebel ◽  
M. Arens ◽  
U. Stilla

Abstract. Change detection is an important tool for processing multiple epochs of mobile LiDAR data in an efficient manner, since it allows to cope with an otherwise time-consuming operation by focusing on regions of interest. State-of-the-art approaches usually either do not handle the case of incomplete observations or are computationally expensive. We present a novel method based on a combination of point clouds and voxels that is able to handle said case, thereby being computationally less expensive than comparable approaches. Furthermore, our method is able to identify special classes of changes such as partially moved, fully moved and deformed objects in addition to the appeared and disappeared objects recognized by conventional approaches. The performance of our method is evaluated using the publicly available TUM City Campus datasets, showing an overall accuracy of 88 %.


Author(s):  
Liliane Rodrigues de Almeida ◽  
Gilson Antonio Giraldi ◽  
Marcelo Bernardes Vieira

Author(s):  
Evangelos Alexiou ◽  
Irene Viola ◽  
Tomás M. Borges ◽  
Tiago A. Fonseca ◽  
Ricardo L. de Queiroz ◽  
...  

Abstract Recent trends in multimedia technologies indicate the need for richer imaging modalities to increase user engagement with the content. Among other alternatives, point clouds denote a viable solution that offers an immersive content representation, as witnessed by current activities in JPEG and MPEG standardization committees. As a result of such efforts, MPEG is at the final stages of drafting an emerging standard for point cloud compression, which we consider as the state-of-the-art. In this study, the entire set of encoders that have been developed in the MPEG committee are assessed through an extensive and rigorous analysis of quality. We initially focus on the assessment of encoding configurations that have been defined by experts in MPEG for their core experiments. Then, two additional experiments are designed and carried to address some of the identified limitations of current approach. As part of the study, state-of-the-art objective quality metrics are benchmarked to assess their capability to predict visual quality of point clouds under a wide range of radically different compression artifacts. To carry the subjective evaluation experiments, a web-based renderer is developed and described. The subjective and objective quality scores along with the rendering software are made publicly available, to facilitate and promote research on the field.


2018 ◽  
Vol 34 (6-8) ◽  
pp. 1021-1030 ◽  
Author(s):  
Enkhbayar Altantsetseg ◽  
Oyundolgor Khorloo ◽  
Kouichi Konno

2021 ◽  
Vol 30 (03) ◽  
Author(s):  
Amar Maharjan ◽  
Xiaohui Yuan ◽  
Qiang Lu ◽  
Yuqi Fan ◽  
Tian Chen

Author(s):  
Bernardo Lourenço ◽  
Tiago Madeira ◽  
Paulo Dias ◽  
Vitor M. Ferreira Santos ◽  
Miguel Oliveira

Purpose 2D laser rangefinders (LRFs) are commonly used sensors in the field of robotics, as they provide accurate range measurements with high angular resolution. These sensors can be coupled with mechanical units which, by granting an additional degree of freedom to the movement of the LRF, enable the 3D perception of a scene. To be successful, this reconstruction procedure requires to evaluate with high accuracy the extrinsic transformation between the LRF and the motorized system. Design/methodology/approach In this work, a calibration procedure is proposed to evaluate this transformation. The method does not require a predefined marker (commonly used despite its numerous disadvantages), as it uses planar features in the point acquired clouds. Findings Qualitative inspections show that the proposed method reduces artifacts significantly, which typically appear in point clouds because of inaccurate calibrations. Furthermore, quantitative results and comparisons with a high-resolution 3D scanner demonstrate that the calibrated point cloud represents the geometries present in the scene with much higher accuracy than with the un-calibrated point cloud. Practical implications The last key point of this work is the comparison of two laser scanners: the lemonbot (authors’) and a commercial FARO scanner. Despite being almost ten times cheaper, the laser scanner was able to achieve similar results in terms of geometric accuracy. Originality/value This work describes a novel calibration technique that is easy to implement and is able to achieve accurate results. One of its key features is the use of planes to calibrate the extrinsic transformation.


Sign in / Sign up

Export Citation Format

Share Document