scholarly journals Detection of Windthrown Tree Stems on UAV-Orthomosaics Using U-Net Convolutional Networks

2021 ◽  
Vol 14 (1) ◽  
pp. 75
Author(s):  
Stefan Reder ◽  
Jan-Peter Mund ◽  
Nicole Albert ◽  
Lilli Waßermann ◽  
Luis Miranda

The increasing number of severe storm events is threatening European forests. Besides the primary damages directly caused by storms, there are secondary damages such as bark beetle outbreaks and tertiary damages due to negative effects on the market. These subsequent damages can be minimized if a detailed overview of the affected area and the amount of damaged wood can be obtained quickly and included in the planning of clearance measures. The present work utilizes UAV-orthophotos and an adaptation of the U-Net architecture for the semantic segmentation and localization of windthrown stems. The network was pre-trained with generic datasets, randomly combining stems and background samples in a copy–paste augmentation, and afterwards trained with a specific dataset of a particular windthrow. The models pre-trained with generic datasets containing 10, 50 and 100 augmentations per annotated windthrown stems achieved F1-scores of 73.9% (S1Mod10), 74.3% (S1Mod50) and 75.6% (S1Mod100), outperforming the baseline model (F1-score 72.6%), which was not pre-trained. These results emphasize the applicability of the method to correctly identify windthrown trees and suggest the collection of training samples from other tree species and windthrow areas to improve the ability to generalize. Further enhancements of the network architecture are considered to improve the classification performance and to minimize the calculative costs.

2019 ◽  
Vol 4 (2) ◽  
pp. 57-62
Author(s):  
Julisa Bana Abraham

The convolutional neural network is commonly used for classification. However, convolutional networks can also be used for semantic segmentation using the fully convolutional network approach. U-Net is one example of a fully convolutional network architecture capable of producing accurate segmentation on biomedical images. This paper proposes to use U-Net for Plasmodium segmentation on thin blood smear images. The evaluation shows that U-Net can accurately perform Plasmodium segmentation on thin blood smear images, besides this study also compares the three loss functions, namely mean-squared error, binary cross-entropy, and Huber loss. The results show that Huber loss has the best testing metrics: 0.9297, 0.9715, 0.8957, 0.9096 for F1 score, positive predictive value (PPV), sensitivity (SE), and relative segmentation accuracy (RSA), respectively.


Author(s):  
Y. Chen ◽  
W. Gao ◽  
E. Widyaningrum ◽  
M. Zheng ◽  
K. Zhou

<p><strong>Abstract.</strong> Semantic segmentation, especially for buildings, from the very high resolution (VHR) airborne images is an important task in urban mapping applications. Nowadays, the deep learning has significantly improved and applied in computer vision applications. Fully Convolutional Networks (FCN) is one of the tops voted method due to their good performance and high computational efficiency. However, the state-of-art results of deep nets depend on the training on large-scale benchmark datasets. Unfortunately, the benchmarks of VHR images are limited and have less generalization capability to another area of interest. As existing high precision base maps are easily available and objects are not changed dramatically in an urban area, the map information can be used to label images for training samples. Apart from object changes between maps and images due to time differences, the maps often cannot perfectly match with images. In this study, the main mislabeling sources are considered and addressed by utilizing stereo images, such as relief displacement, different representation between the base map and the image, and occlusion areas in the image. These free training samples are then fed to a pre-trained FCN. To find the better result, we applied fine-tuning with different learning rates and freezing different layers. We further improved the results by introducing atrous convolution. By using free training samples, we achieve a promising building classification with 85.6<span class="thinspace"></span>% overall accuracy and 83.77<span class="thinspace"></span>% F1 score, while the result from ISPRS benchmark by using manual labels has 92.02<span class="thinspace"></span>% overall accuracy and 84.06<span class="thinspace"></span>% F1 score, due to the building complexities in our study area.</p>


Sensors ◽  
2020 ◽  
Vol 20 (2) ◽  
pp. 563 ◽  
Author(s):  
Daliana Lobo Torres ◽  
Raul Queiroz Feitosa ◽  
Patrick Nigri Happ ◽  
Laura Elena Cué La Rosa ◽  
José Marcato Junior ◽  
...  

This study proposes and evaluates five deep fully convolutional networks (FCNs) for the semantic segmentation of a single tree species: SegNet, U-Net, FC-DenseNet, and two DeepLabv3+ variants. The performance of the FCN designs is evaluated experimentally in terms of classification accuracy and computational load. We also verify the benefits of fully connected conditional random fields (CRFs) as a post-processing step to improve the segmentation maps. The analysis is conducted on a set of images captured by an RGB camera aboard a UAV flying over an urban area. The dataset also contains a mask that indicates the occurrence of an endangered species called Dipteryx alata Vogel, also known as cumbaru, taken as the species to be identified. The experimental analysis shows the effectiveness of each design and reports average overall accuracy ranging from 88.9% to 96.7%, an F1-score between 87.0% and 96.1%, and IoU from 77.1% to 92.5%. We also realize that CRF consistently improves the performance, but at a high computational cost.


Author(s):  
S. Schmitz ◽  
M. Weinmann ◽  
A. Thiele

Abstract. Inspired by the application of state-of-the-art Fully Convolutional Networks (FCNs) for the semantic segmentation of high-resolution optical imagery, recent works transfer this methodology successfully to pixel-wise land use and land cover (LULC) classification of PolSAR data. So far, mainly single PolSAR images are included in the FCN-based classification processes. To further increase classification accuracy, this paper presents an approach for integrating interferometric coherence derived from co-registered image pairs into a FCN-based classification framework. A network based on an encoder-decoder structure with two separated encoder branches is presented for this task. It extracts features from polarimetric backscattering intensities on the one hand and interferometric coherence on the other hand. Based on a joint representation of the complementary features pixel-wise classification is performed. To overcome the scarcity of labelled SAR data for training and testing, annotations are generated automatically by fusing available LULC products. Experimental evaluation is performed on high-resolution airborne SAR data, captured over the German Wadden Sea. The results demonstrate that the proposed model produces smooth and accurate classification maps. A comparison with a single-branch FCN model indicates that the appropriate integration of interferometric coherence enables the improvement of classification performance.


IEEE Access ◽  
2020 ◽  
pp. 1-1
Author(s):  
Jeremy M. Webb ◽  
Duane D. Meixner ◽  
Shaheeda A. Adusei ◽  
Eric C. Polley ◽  
Mostafa Fatemi ◽  
...  

2021 ◽  
Vol 11 (11) ◽  
pp. 4880
Author(s):  
Abigail Copiaco ◽  
Christian Ritz ◽  
Nidhal Abdulaziz ◽  
Stefano Fasciani

Recent methodologies for audio classification frequently involve cepstral and spectral features, applied to single channel recordings of acoustic scenes and events. Further, the concept of transfer learning has been widely used over the years, and has proven to provide an efficient alternative to training neural networks from scratch. The lower time and resource requirements when using pre-trained models allows for more versatility in developing system classification approaches. However, information on classification performance when using different features for multi-channel recordings is often limited. Furthermore, pre-trained networks are initially trained on bigger databases and are often unnecessarily large. This poses a challenge when developing systems for devices with limited computational resources, such as mobile or embedded devices. This paper presents a detailed study of the most apparent and widely-used cepstral and spectral features for multi-channel audio applications. Accordingly, we propose the use of spectro-temporal features. Additionally, the paper details the development of a compact version of the AlexNet model for computationally-limited platforms through studies of performances against various architectural and parameter modifications of the original network. The aim is to minimize the network size while maintaining the series network architecture and preserving the classification accuracy. Considering that other state-of-the-art compact networks present complex directed acyclic graphs, a series architecture proposes an advantage in customizability. Experimentation was carried out through Matlab, using a database that we have generated for this task, which composes of four-channel synthetic recordings of both sound events and scenes. The top performing methodology resulted in a weighted F1-score of 87.92% for scalogram features classified via the modified AlexNet-33 network, which has a size of 14.33 MB. The AlexNet network returned 86.24% at a size of 222.71 MB.


2021 ◽  
Vol 40 (3) ◽  
pp. 1-13
Author(s):  
Lumin Yang ◽  
Jiajie Zhuang ◽  
Hongbo Fu ◽  
Xiangzhi Wei ◽  
Kun Zhou ◽  
...  

We introduce SketchGNN , a convolutional graph neural network for semantic segmentation and labeling of freehand vector sketches. We treat an input stroke-based sketch as a graph with nodes representing the sampled points along input strokes and edges encoding the stroke structure information. To predict the per-node labels, our SketchGNN uses graph convolution and a static-dynamic branching network architecture to extract the features at three levels, i.e., point-level, stroke-level, and sketch-level. SketchGNN significantly improves the accuracy of the state-of-the-art methods for semantic sketch segmentation (by 11.2% in the pixel-based metric and 18.2% in the component-based metric over a large-scale challenging SPG dataset) and has magnitudes fewer parameters than both image-based and sequence-based methods.


2021 ◽  
Vol 10 (8) ◽  
pp. 523
Author(s):  
Nicholus Mboga ◽  
Stefano D’Aronco ◽  
Tais Grippa ◽  
Charlotte Pelletier ◽  
Stefanos Georganos ◽  
...  

Multitemporal environmental and urban studies are essential to guide policy making to ultimately improve human wellbeing in the Global South. Land-cover products derived from historical aerial orthomosaics acquired decades ago can provide important evidence to inform long-term studies. To reduce the manual labelling effort by human experts and to scale to large, meaningful regions, we investigate in this study how domain adaptation techniques and deep learning can help to efficiently map land cover in Central Africa. We propose and evaluate a methodology that is based on unsupervised adaptation to reduce the cost of generating reference data for several cities and across different dates. We present the first application of domain adaptation based on fully convolutional networks for semantic segmentation of a dataset of historical panchromatic orthomosaics for land-cover generation for two focus cities Goma-Gisenyi and Bukavu. Our experimental evaluation shows that the domain adaptation methods can reach an overall accuracy between 60% and 70% for different regions. If we add a small amount of labelled data from the target domain, too, further performance gains can be achieved.


2021 ◽  
Vol 13 (4) ◽  
pp. 547
Author(s):  
Wenning Wang ◽  
Xuebin Liu ◽  
Xuanqin Mou

For both traditional classification and current popular deep learning methods, the limited sample classification problem is very challenging, and the lack of samples is an important factor affecting the classification performance. Our work includes two aspects. First, the unsupervised data augmentation for all hyperspectral samples not only improves the classification accuracy greatly with the newly added training samples, but also further improves the classification accuracy of the classifier by optimizing the augmented test samples. Second, an effective spectral structure extraction method is designed, and the effective spectral structure features have a better classification accuracy than the true spectral features.


Sign in / Sign up

Export Citation Format

Share Document