scholarly journals Classification of ALS Point Cloud with Improved Point Cloud Segmentation and Random Forests

2017 ◽  
Vol 9 (3) ◽  
pp. 288 ◽  
Author(s):  
Huan Ni ◽  
Xiangguo Lin ◽  
Jixian Zhang
2019 ◽  
Vol 21 ◽  
pp. 468-477 ◽  
Author(s):  
Maarten Bassier ◽  
Bjorn Van Genechten ◽  
Maarten Vergauwen

Author(s):  
Mathieu Turgeon-Pelchat ◽  
Samuel Foucher ◽  
Yacine Bouroubi

GigaScience ◽  
2021 ◽  
Vol 10 (5) ◽  
Author(s):  
Teng Miao ◽  
Weiliang Wen ◽  
Yinglun Li ◽  
Sheng Wu ◽  
Chao Zhu ◽  
...  

Abstract Background The 3D point cloud is the most direct and effective data form for studying plant structure and morphology. In point cloud studies, the point cloud segmentation of individual plants to organs directly determines the accuracy of organ-level phenotype estimation and the reliability of the 3D plant reconstruction. However, highly accurate, automatic, and robust point cloud segmentation approaches for plants are unavailable. Thus, the high-throughput segmentation of many shoots is challenging. Although deep learning can feasibly solve this issue, software tools for 3D point cloud annotation to construct the training dataset are lacking. Results We propose a top-to-down point cloud segmentation algorithm using optimal transportation distance for maize shoots. We apply our point cloud annotation toolkit for maize shoots, Label3DMaize, to achieve semi-automatic point cloud segmentation and annotation of maize shoots at different growth stages, through a series of operations, including stem segmentation, coarse segmentation, fine segmentation, and sample-based segmentation. The toolkit takes ∼4–10 minutes to segment a maize shoot and consumes 10–20% of the total time if only coarse segmentation is required. Fine segmentation is more detailed than coarse segmentation, especially at the organ connection regions. The accuracy of coarse segmentation can reach 97.2% that of fine segmentation. Conclusion Label3DMaize integrates point cloud segmentation algorithms and manual interactive operations, realizing semi-automatic point cloud segmentation of maize shoots at different growth stages. The toolkit provides a practical data annotation tool for further online segmentation research based on deep learning and is expected to promote automatic point cloud processing of various plants.


2021 ◽  
Vol 11 (3) ◽  
pp. 92
Author(s):  
Mehdi Berriri ◽  
Sofiane Djema ◽  
Gaëtan Rey ◽  
Christel Dartigues-Pallez

Today, many students are moving towards higher education courses that do not suit them and end up failing. The purpose of this study is to help provide counselors with better knowledge so that they can offer future students courses corresponding to their profile. The second objective is to allow the teaching staff to propose training courses adapted to students by anticipating their possible difficulties. This is possible thanks to a machine learning algorithm called Random Forest, allowing for the classification of the students depending on their results. We had to process data, generate models using our algorithm, and cross the results obtained to have a better final prediction. We tested our method on different use cases, from two classes to five classes. These sets of classes represent the different intervals with an average ranging from 0 to 20. Thus, an accuracy of 75% was achieved with a set of five classes and up to 85% for sets of two and three classes.


2021 ◽  
Vol 176 ◽  
pp. 237-249
Author(s):  
Aoran Xiao ◽  
Xiaofei Yang ◽  
Shijian Lu ◽  
Dayan Guan ◽  
Jiaxing Huang

2021 ◽  
Vol 437 ◽  
pp. 227-237
Author(s):  
Hongyan Li ◽  
Zhengxing Sun ◽  
Yunjie Wu ◽  
Youcheng Song

Sign in / Sign up

Export Citation Format

Share Document