scholarly journals Nominal 30-m Cropland Extent Map of Continental Africa by Integrating Pixel-Based and Object-Based Algorithms Using Sentinel-2 and Landsat-8 Data on Google Earth Engine

2017 ◽  
Vol 9 (10) ◽  
pp. 1065 ◽  
Author(s):  
Jun Xiong ◽  
Prasad Thenkabail ◽  
James Tilton ◽  
Murali Gumma ◽  
Pardhasaradhi Teluguntla ◽  
...  
2021 ◽  
Vol 13 (12) ◽  
pp. 2299
Author(s):  
Andrea Tassi ◽  
Daniela Gigante ◽  
Giuseppe Modica ◽  
Luciano Di Martino ◽  
Marco Vizzari

With the general objective of producing a 2018–2020 Land Use/Land Cover (LULC) map of the Maiella National Park (central Italy), useful for a future long-term LULC change analysis, this research aimed to develop a Landsat 8 (L8) data composition and classification process using Google Earth Engine (GEE). In this process, we compared two pixel-based (PB) and two object-based (OB) approaches, assessing the advantages of integrating the textural information in the PB approach. Moreover, we tested the possibility of using the L8 panchromatic band to improve the segmentation step and the object’s textural analysis of the OB approach and produce a 15-m resolution LULC map. After selecting the best time window of the year to compose the base data cube, we applied a cloud-filtering and a topography-correction process on the 32 available L8 surface reflectance images. On this basis, we calculated five spectral indices, some of them on an interannual basis, to account for vegetation seasonality. We added an elevation, an aspect, a slope layer, and the 2018 CORINE Land Cover classification layer to improve the available information. We applied the Gray-Level Co-Occurrence Matrix (GLCM) algorithm to calculate the image’s textural information and, in the OB approaches, the Simple Non-Iterative Clustering (SNIC) algorithm for the image segmentation step. We performed an initial RF optimization process finding the optimal number of decision trees through out-of-bag error analysis. We randomly distributed 1200 ground truth points and used 70% to train the RF classifier and 30% for the validation phase. This subdivision was randomly and recursively redefined to evaluate the performance of the tested approaches more robustly. The OB approaches performed better than the PB ones when using the 15 m L8 panchromatic band, while the addition of textural information did not improve the PB approach. Using the panchromatic band within an OB approach, we produced a detailed, 15-m resolution LULC map of the study area.


2018 ◽  
Vol 11 (1) ◽  
pp. 43 ◽  
Author(s):  
Masoud Mahdianpari ◽  
Bahram Salehi ◽  
Fariba Mohammadimanesh ◽  
Saeid Homayouni ◽  
Eric Gill

Wetlands are one of the most important ecosystems that provide a desirable habitat for a great variety of flora and fauna. Wetland mapping and modeling using Earth Observation (EO) data are essential for natural resource management at both regional and national levels. However, accurate wetland mapping is challenging, especially on a large scale, given their heterogeneous and fragmented landscape, as well as the spectral similarity of differing wetland classes. Currently, precise, consistent, and comprehensive wetland inventories on a national- or provincial-scale are lacking globally, with most studies focused on the generation of local-scale maps from limited remote sensing data. Leveraging the Google Earth Engine (GEE) computational power and the availability of high spatial resolution remote sensing data collected by Copernicus Sentinels, this study introduces the first detailed, provincial-scale wetland inventory map of one of the richest Canadian provinces in terms of wetland extent. In particular, multi-year summer Synthetic Aperture Radar (SAR) Sentinel-1 and optical Sentinel-2 data composites were used to identify the spatial distribution of five wetland and three non-wetland classes on the Island of Newfoundland, covering an approximate area of 106,000 km2. The classification results were evaluated using both pixel-based and object-based random forest (RF) classifications implemented on the GEE platform. The results revealed the superiority of the object-based approach relative to the pixel-based classification for wetland mapping. Although the classification using multi-year optical data was more accurate compared to that of SAR, the inclusion of both types of data significantly improved the classification accuracies of wetland classes. In particular, an overall accuracy of 88.37% and a Kappa coefficient of 0.85 were achieved with the multi-year summer SAR/optical composite using an object-based RF classification, wherein all wetland and non-wetland classes were correctly identified with accuracies beyond 70% and 90%, respectively. The results suggest a paradigm-shift from standard static products and approaches toward generating more dynamic, on-demand, large-scale wetland coverage maps through advanced cloud computing resources that simplify access to and processing of the “Geo Big Data.” In addition, the resulting ever-demanding inventory map of Newfoundland is of great interest to and can be used by many stakeholders, including federal and provincial governments, municipalities, NGOs, and environmental consultants to name a few.


2022 ◽  
Vol 14 (1) ◽  
pp. 225
Author(s):  
Lijing Han ◽  
Jianli Ding ◽  
Jinjie Wang ◽  
Junyong Zhang ◽  
Boqiang Xie ◽  
...  

Rapid and accurate mapping of the spatial distribution of cotton fields is helpful to ensure safe production of cotton fields and the rationalization of land-resource planning. As cotton is an important economic pillar in Xinjiang, accurate and efficient mapping of cotton fields helps the implementation of rural revitalization strategy in Xinjiang region. In this paper, based on the Google Earth Engine cloud computing platform, we use a random forest machine-learning algorithm to classify Landsat 5 and 8 and Sentinel 2 satellite images to obtain the spatial distribution characteristics of cotton fields in 2011, 2015 and 2020 in the Ogan-Kucha River oasis, Xinjiang. Unlike previous studies, the mulching process was considered when using cotton field phenology information as a classification feature. The results show that both Landsat 5, Landsat 8 and Sentinel 2 satellites can successfully classify cotton field information when the mulching process is considered, but Sentinel 2 satellite classification results have the best user accuracy of 0.947. Sentinel 2 images can distinguish some cotton fields from roads well because they have higher spatial resolution than Landsat 8. After the cotton fields were mulched, there was a significant increase in spectral reflectance in the visible, red-edge and near-infrared bands, and a decrease in the short-wave infrared band. The increase in the area of oasis cotton fields and the extensive use of mulched drip-irrigation water saving facilities may lead to a decrease in the groundwater level. Overall, the use of mulch as a phenological feature for classification mapping is a good indicator in cotton-growing areas covered by mulch, and mulch drip irrigation may lead to a decrease in groundwater levels in oases in arid areas.


2021 ◽  
Author(s):  
Qiao Li ◽  
James Lea ◽  
Stephen Brough

<p>Supraglacial lakes (SGLs) are a major component of Greenland’s surface hydrology and mass balance. Monitoring their evolution at multi-day to sub-daily timescales has traditionally been performed by relatively low-resolution sensors such as MODIS Terra, though opportunities exist for using higher spatial resolution sensors at high latitudes.</p><p>In this study, we take advantage of frequent orbital crossovers of Sentinel 2 and Landsat 8 imagery at high latitudes to monitor lakes at multi-day to sub-day temporal resolution, and spatial resolutions up to/over an order of magnitude higher than MODIS Terra (10 m to 30 m, compared to ~250 m for MODIS Terra). Through leveraging the cloud computing resources of Google Earth Engine (GEE), we have developed a workflow to track the evolution of lakes for all available Sentinel 2 and Landsat 8 images over a melt season.</p><p>Our workflow builds on the approach of Moussavi et al. (2020) that was developed for Antarctica, implementing it within GEE to explore its sensitivity and suitability for application to the catchment of the North East Greenland Ice Stream (NEGIS) for the 2019 melt season. To improve the efficiency of analysis, we analyse 282 large lakes (>0.125 km^2) that were previously identified through analysis of MODIS Terra imagery. All lake outlines are appended with image ID and lake area metadata to facilitate subsequent analysis, and allow each lake outline to be traced back to the original image that it was derived from. Our approach is able to monitor lake growth and drainage at unprecedented spatial and temporal resolutions over a large area, allowing the widespread characterization of seasonal lake evolution.</p>


2020 ◽  
Vol 12 (19) ◽  
pp. 3232
Author(s):  
Nicola Genzano ◽  
Nicola Pergola ◽  
Francesco Marchese

Several satellite-based systems have been developed over the years to study and monitor thermal volcanic activity. Most of them use high temporal resolution satellite data, provided by sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS) that if on the one hand guarantee a continuous monitoring of active volcanic areas on the other hand are less suited to map thermal anomalies, and to provide accurate information about their features. The Multispectral Instrument (MSI) and the Operational Land Imager (OLI), respectively, onboard the Sentinel-2 and Landsat-8 satellites, providing Short-Wave Infrared (SWIR) data at 20 m (MSI) and 30 m (OLI) spatial resolution, may make an important contribution in this area. In this work, we present the first Google Earth Engine (GEE) App to investigate, map and monitor volcanic thermal anomalies at global scale, integrating Landsat-8 OLI and Sentinel-2 MSI observations. This open tool, which implements the Normalized Hot spot Indices (NHI) algorithm, enables the analysis of more than 1400 active volcanoes, with very low processing times, thanks to the high GEE computational resources. Performance and limitations of the tool, such as its next upgrades, aiming at increasing the user-friendly experience and extending the temporal range of data analyses, are analyzed and discussed.


2020 ◽  
Vol 12 (18) ◽  
pp. 3109 ◽  
Author(s):  
Manjunatha Venkatappa ◽  
Sutee Anantsuksomsri ◽  
Jose Alan Castillo ◽  
Benjamin Smith ◽  
Nophea Sasaki

Although vegetation phenology thresholds have been developed for a wide range of mapping applications, their use for assessing the distribution of natural bamboo and the related carbon stocks is still limited, especially in Southeast Asia. Here, we used Google Earth Engine (GEE) to collect time-series of Landsat 8 Operational Land Imager (OLI) and Sentinel-2 images and employed a phenology-based threshold classification method (PBTC) to map the natural bamboo distribution and estimate carbon stocks in Siem Reap Province, Cambodia. We processed 337 collections of Landsat 8 OLI for phenological assessment and generated 121 phenological profiles of the average vegetation index for three vegetation land cover categories from 2015 to 2018. After determining the minimum and maximum threshold values for bamboo during the leaf-shedding phenology stage, the PBTC method was applied to produce a seasonal composite enhanced vegetation index (EVI) for Landsat collections and assess the bamboo distributions in 2015 and 2018. Bamboo distributions in 2019 were then mapped by applying the EVI phenological threshold values for 10 m resolution Sentinel-2 satellite imagery by accessing 442 tiles. The overall Landsat 8 OLI bamboo maps for 2015 and 2018 had user’s accuracies (UAs) of 86.6% and 87.9% and producer’s accuracies (PAs) of 95.7% and 97.8%, respectively, and a UA of 86.5% and PA of 91.7% were obtained from Sentinel-2 imagery for 2019. Accordingly, carbon stocks of natural bamboo by district in Siem Reap at the province level were estimated. Emission reductions from the protection of natural bamboo can be used to offset 6% of the carbon emissions from tourists who visit this tourism-destination province. It is concluded that a combination of GEE and PBTC and the increasing availability of remote sensing data make it possible to map the natural distribution of bamboo and carbon stocks.


Sign in / Sign up

Export Citation Format

Share Document