scholarly journals Enhancing the Isolation and Performance of Control Planes for Fog Computing

Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3267 ◽  
Author(s):  
Kyungwoon Lee ◽  
Chiyoung Lee ◽  
Cheol-Ho Hong ◽  
Chuck Yoo

Fog computing, which places computing resources close to IoT devices, can offer low latency data processing for IoT applications. With software-defined networking (SDN), fog computing can enable network control logics to become programmable and run on a decoupled control plane, rather than on a physical switch. Therefore, network switches are controlled via the control plane. However, existing control planes have limitations in providing isolation and high performance, which are crucial to support multi-tenancy and scalability in fog computing. In this paper, we present optimization techniques for Linux to provide isolation and high performance for the control plane of SDN. The new techniques are (1) separate execution environment (SE2), which separates the execution environments between multiple control planes, and (2) separate packet processing (SP2), which reduces the complexity of the existing network stack in Linux. We evaluate the proposed techniques on commodity hardware and show that the maximum performance of a control plane increases by four times compared to the native Linux while providing strong isolation.

2021 ◽  
Author(s):  
Chris V. Pilcher

A multidisciplinary design optimization (MDO) strategy for the preliminary design of a sailplane has been developed. The proposed approach applies MDO techniques and multi-fidelity analysis methods which have seen successful use in many aerospace design applications. A customized genetic algorithm (GA) was developed to control the sailplane optimization that included aerodynamics/stability, structures/weights and balance and, performance/airworthiness disciplinary analysis modules. An adaptive meshing routine was developed to allow for accurate modeling of the aero structural couplinginvolved in wing design, which included a finite element method (FEM) structural solver along with a vortex lattice aerodynamics solver. Empirical equations were used to evaluate basic sailplane performance and airworthiness requirements. This research yielded an optimum design that correlated well with an existing high performance sailplane. The results of this thesis suggest that preliminary sailplane design is a well suited application for modern optimization techniques when coupled with, multi-fidelity analysis methods.


2019 ◽  
Vol 8 (4) ◽  
pp. 9266-9270

Internet of things (IoT) is a quick-moving gathering of web associated sensors implanted in a wide-extending assortment of physical articles. While things can be any physical item (energize or lifeless) on the planet, to which you could associate or implant a sensor. Sensors can take countless potential estimations. Sensors produce gigantic measures of new, organized, unstructured, ongoing information, and structures enormous information. IoT information is exceptionally huge and confused, which can give genuine-time setting and supposition data about genuine articles or nature. Among the different challenges that the present IoT is facing, the three prime areas of concern are, need of efficient framework to receive IoT data, a need of a new scalable parallel indexing technique for efficiently storing IoT data and securing IoT generated data at all the stages i.e. from the edge devices to the cloud. A new efficient framework is introduced, which can retrieve meaningful information from these IoT devices and efficiently index it. For processing such enormous real time data generated from IoT devices, new techniques are introducing which are scalable and secure. The research proposes a general IoT network architecture. It describes the interconnectivity among the different things such as sensors, receivers and cloud. The proposed architecture efficiently receives real time data from all the sensors. The prime focus is on the elimination of the existing issues in IoT. Along with this, the provision has to make for standard future proofing against these new proposed schemes.


Author(s):  
Wayne M. Bynoe ◽  
Stephen M. McGarry ◽  
Leonid Veytser ◽  
Paul Christensen ◽  
Mark Yeager ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (15) ◽  
pp. 5162
Author(s):  
Joana Costa ◽  
Catarina Silva ◽  
Miguel Santos ◽  
Telmo Fernandes ◽  
Sérgio Faria

Intelligent approaches in sports using IoT devices to gather data, attempting to optimize athlete’s training and performance, are cutting edge research. Synergies between recent wearable hardware and wireless communication strategies, together with the advances in intelligent algorithms, which are able to perform online pattern recognition and classification with seamless results, are at the front line of high-performance sports coaching. In this work, an intelligent data analytics system for swimmer performance is proposed. The system includes (i) pre-processing of raw signals; (ii) feature representation of wearable sensors and biosensors; (iii) online recognition of the swimming style and turns; and (iv) post-analysis of the performance for coaching decision support, including stroke counting and average speed. The system is supported by wearable inertial (AHRS) and biosensors (heart rate and pulse oximetry) placed on a swimmer’s body. Radio-frequency links are employed to communicate with the heart rate sensor and the station in the vicinity of the swimming pool, where analytics is carried out. Experiments were carried out in a real training setup, including 10 athletes aged 15 to 17 years. This scenario resulted in a set of circa 8000 samples. The experimental results show that the proposed system for intelligent swimming analytics with wearable sensors effectively yields immediate feedback to coaches and swimmers based on real-time data analysis. The best result was achieved with a Random Forest classifier with a macro-averaged F1 of 95.02%. The benefit of the proposed framework was demonstrated by effectively supporting coaches while monitoring the training of several swimmers.


Electronics ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 950 ◽  
Author(s):  
Yue Jiang ◽  
Hongyi Chen ◽  
Xiangrui Yang ◽  
Zhigang Sun ◽  
Wei Quan

The southbound protocol of Software Defined Networking (SDN) enables the direct access into SDN switches which accelerates the innovation and deployment of network functions in the data plane. Correspondingly, SDN switches that support the new southbound protocol and provide high performance are developed continuously. Therefore, there is an increasing need for testing tools to test such equipment in terms of protocol correctness and performance. However, existing tools have deficiencies in flexibility for verifying the novel southbound protocol, time synchronization between the two planes, and supporting more testing functions with less resource consumption. In this paper, we present the concept of CPU & FPGA co-design Tester (CFT) for SDN switches, which provides flexible APIs for test cases of the control plane and high performance for testing functions in the data plane. We put forward an efficient scheduling algorithm to integrate the control plane and the data plane into a single pipeline which fundamentally solves the time asynchronization between these two planes. Due to the reconfigurable feature of our proposed pipeline, it becomes possible to perform different testing functions in one pipeline. Through a prototype implementation and evaluation, we reveal that the proposed CFT can verify the protocol correctness of SDN switches on the control plane while providing no-worse performance for tests on the data plane compared with commercial testers.


2021 ◽  
Author(s):  
Chris V. Pilcher

A multidisciplinary design optimization (MDO) strategy for the preliminary design of a sailplane has been developed. The proposed approach applies MDO techniques and multi-fidelity analysis methods which have seen successful use in many aerospace design applications. A customized genetic algorithm (GA) was developed to control the sailplane optimization that included aerodynamics/stability, structures/weights and balance and, performance/airworthiness disciplinary analysis modules. An adaptive meshing routine was developed to allow for accurate modeling of the aero structural couplinginvolved in wing design, which included a finite element method (FEM) structural solver along with a vortex lattice aerodynamics solver. Empirical equations were used to evaluate basic sailplane performance and airworthiness requirements. This research yielded an optimum design that correlated well with an existing high performance sailplane. The results of this thesis suggest that preliminary sailplane design is a well suited application for modern optimization techniques when coupled with, multi-fidelity analysis methods.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2766 ◽  
Author(s):  
Helber Wagner da Silva ◽  
Augusto José Venâncio Neto

The combination of IoT and mobility promises to open a new frontier of innovations in smart environments, through the advent of the Internet of Moving Things (IoMT) paradigm. In IoMT, an array of IoT devices leverage IP-based mobile connectivity to provide a vast range of data ubiquitously. The IoMT realization will foster smart environments at unprecedented levels, by efficiently affording services and applications whereby today’s technologies make their efficiency unfeasible, such as autonomous driving and in-ambulance remotely-assisted patient. IoMT-supported mission-critical applications push computing and networking requirements to totally new levels that must be met, raising the need for refined approaches that advance beyond existing technologies. In light of this, this paper proposes the Resilient MultiUser Session Control (ReMUSiC) framework, which deploys emerging softwarization and cloudification technologies to afford flexible, optimized and self-organized control plane perspectives. ReMUSiC extends our previous work through the following innovations. A quality-oriented resilience mechanism is capable of responding to network dynamics events (failure and mobility) by readapting IoMT multiuser mobile sessions. A softwarized networking control plane that allows to, at runtime, both fetch current network state and set up resources in the attempt to always keep affected IoMT multiuser mobile sessions best-connected and best-served. A cloudification approach allows a robust environment, through which cloud- and fog-systems interwork to cater to performance-enhanced capabilities. The IoMT’s suitability and performance impacts by ReMUSiC framework use are assessed through real testbed prototyping. Impact analysis in Quality of Service (QoS) performance and perceived Quality of Experience (QoE), demonstrate the remarkable abilities of the ReMUSiC framework, over a related approach, in keeping IoMT multiuser mobile sessions always best-connected and best-served.


Author(s):  
D. E. Newbury ◽  
R. D. Leapman

Trace constituents, which can be very loosely defined as those present at concentration levels below 1 percent, often exert influence on structure, properties, and performance far greater than what might be estimated from their proportion alone. Defining the role of trace constituents in the microstructure, or indeed even determining their location, makes great demands on the available array of microanalytical tools. These demands become increasingly more challenging as the dimensions of the volume element to be probed become smaller. For example, a cubic volume element of silicon with an edge dimension of 1 micrometer contains approximately 5×1010 atoms. High performance secondary ion mass spectrometry (SIMS) can be used to measure trace constituents to levels of hundreds of parts per billion from such a volume element (e. g., detection of at least 100 atoms to give 10% reproducibility with an overall detection efficiency of 1%, considering ionization, transmission, and counting).


2020 ◽  
Vol 12 (2) ◽  
pp. 19-50 ◽  
Author(s):  
Muhammad Siddique ◽  
Shandana Shoaib ◽  
Zahoor Jan

A key aspect of work processes in service sector firms is the interconnection between tasks and performance. Relational coordination can play an important role in addressing the issues of coordinating organizational activities due to high level of interdependence complexity in service sector firms. Research has primarily supported the aspect that well devised high performance work systems (HPWS) can intensify organizational performance. There is a growing debate, however, with regard to understanding the “mechanism” linking HPWS and performance outcomes. Using relational coordination theory, this study examines a model that examine the effects of subsets of HPWS, such as motivation, skills and opportunity enhancing HR practices on relational coordination among employees working in reciprocal interdependent job settings. Data were gathered from multiple sources including managers and employees at individual, functional and unit levels to know their understanding in relation to HPWS and relational coordination (RC) in 218 bank branches in Pakistan. Data analysis via structural equation modelling, results suggest that HPWS predicted RC among officers at the unit level. The findings of the study have contributions to both, theory and practice.


2019 ◽  
Vol 14 ◽  
pp. 155892501989525
Author(s):  
Yu Yang ◽  
Yanyan Jia

Ultrafine crystallization of industrial pure titanium allowed for higher tensile strength, corrosion resistance, and thermal stability and is therefore widely used in medical instrumentation, aerospace, and passenger vehicle manufacturing. However, the ultrafine crystallizing batch preparation of tubular industrial pure titanium is limited by the development of the spinning process and has remained at the theoretical research stage. In this article, the tubular TA2 industrial pure titanium was taken as the research object, and the ultrafine crystal forming process based on “5-pass strong spin-heat treatment-3 pass-spreading-heat treatment” was proposed. Based on the spinning process test, the ultimate thinning rate of the method is explored and the evolution of the surface microstructure was analyzed by metallographic microscope. The research suggests that the multi-pass, medium–small, and thinning amount of spinning causes the grain structure to be elongated in the axial and tangential directions, and then refined, and the axial fiber uniformity is improved. The research results have certain scientific significance for reducing the consumption of high-performance metals improving material utilization and performance, which also promote the development of ultrafine-grain metals’ preparation technology.


Sign in / Sign up

Export Citation Format

Share Document