scholarly journals Deep CNNs with Robust LBP Guiding Pooling for Face Recognition

Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3876 ◽  
Author(s):  
Zhongjian Ma ◽  
Yuanyuan Ding ◽  
Baoqing Li ◽  
Xiaobing Yuan

Pooling layer in Convolutional Neural Networks (CNNs) is designed to reduce dimensions and computational complexity. Unfortunately, CNN is easily disturbed by noise in images when extracting features from input images. The traditional pooling layer directly samples the input feature maps without considering whether they are affected by noise, which brings about accumulated noise in the subsequent feature maps as well as undesirable network outputs. To address this issue, a robust Local Binary Pattern (LBP) Guiding Pooling (G-RLBP) mechanism is proposed in this paper to down sample the input feature maps and lower the noise impact simultaneously. The proposed G-RLBP method calculates the weighted average of all pixels in the sliding window of this pooling layer as the final results based on their corresponding probabilities of being affected by noise, thus lowers the noise impact from input images at the first several layers of the CNNs. The experimental results show that the carefully designed G-RLBP layer can successfully lower the noise impact and improve the recognition rates of the CNN models over the traditional pooling layer. The performance gain of the G-RLBP is quite remarkable when the images are severely affected by noise.

2019 ◽  
Vol 8 (2S11) ◽  
pp. 2447-2451

Now-a-days face recognition plays a major role in identifying face of the specific person. There are different face recognition algorithms such as Eigenfaces algorithm, Local binary pattern histograms, Fisherfaces algorithm. All these algorithms face the problem of subject independence as well as translation, rotation, and scale invariance in the recognition of facial expression. In this study, the face recognition using neural network and convolutional neural network (CNN) techniques were utilized and implemented with the help of Python software 3.6.6. It is noticed that the test accuracy is improved against translation, rotation, and scale invariance in face recognition using CNN.


2014 ◽  
Vol 8 (3) ◽  
pp. 31-34
Author(s):  
O. Rama Devi ◽  
◽  
L. S. S. Reddy ◽  
E. V. Prasad ◽  
◽  
...  

Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 223
Author(s):  
Yen-Ling Tai ◽  
Shin-Jhe Huang ◽  
Chien-Chang Chen ◽  
Henry Horng-Shing Lu

Nowadays, deep learning methods with high structural complexity and flexibility inevitably lean on the computational capability of the hardware. A platform with high-performance GPUs and large amounts of memory could support neural networks having large numbers of layers and kernels. However, naively pursuing high-cost hardware would probably drag the technical development of deep learning methods. In the article, we thus establish a new preprocessing method to reduce the computational complexity of the neural networks. Inspired by the band theory of solids in physics, we map the image space into a noninteraction physical system isomorphically and then treat image voxels as particle-like clusters. Then, we reconstruct the Fermi–Dirac distribution to be a correction function for the normalization of the voxel intensity and as a filter of insignificant cluster components. The filtered clusters at the circumstance can delineate the morphological heterogeneity of the image voxels. We used the BraTS 2019 datasets and the dimensional fusion U-net for the algorithmic validation, and the proposed Fermi–Dirac correction function exhibited comparable performance to other employed preprocessing methods. By comparing to the conventional z-score normalization function and the Gamma correction function, the proposed algorithm can save at least 38% of computational time cost under a low-cost hardware architecture. Even though the correction function of global histogram equalization has the lowest computational time among the employed correction functions, the proposed Fermi–Dirac correction function exhibits better capabilities of image augmentation and segmentation.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4115 ◽  
Author(s):  
Yuxia Li ◽  
Bo Peng ◽  
Lei He ◽  
Kunlong Fan ◽  
Zhenxu Li ◽  
...  

Roads are vital components of infrastructure, the extraction of which has become a topic of significant interest in the field of remote sensing. Because deep learning has been a popular method in image processing and information extraction, researchers have paid more attention to extracting road using neural networks. This article proposes the improvement of neural networks to extract roads from Unmanned Aerial Vehicle (UAV) remote sensing images. D-Linknet was first considered for its high performance; however, the huge scale of the net reduced computational efficiency. With a focus on the low computational efficiency problem of the popular D-LinkNet, this article made some improvements: (1) Replace the initial block with a stem block. (2) Rebuild the entire network based on ResNet units with a new structure, allowing for the construction of an improved neural network D-Linknetplus. (3) Add a 1 × 1 convolution layer before DBlock to reduce the input feature maps, reducing parameters and improving computational efficiency. Add another 1 × 1 convolution layer after DBlock to recover the required number of output channels. Accordingly, another improved neural network B-D-LinknetPlus was built. Comparisons were performed between the neural nets, and the verification were made with the Massachusetts Roads Dataset. The results show improved neural networks are helpful in reducing the network size and developing the precision needed for road extraction.


2013 ◽  
Author(s):  
Ya Qiao ◽  
Yuan Lu ◽  
Yun-song Feng ◽  
Feng Li ◽  
Yongshun Ling

2021 ◽  
Author(s):  
Maha Mdini ◽  
Takemasa Miyoshi ◽  
Shigenori Otsuka

<p>In the era of modern science, scientists have developed numerical models to predict and understand the weather and ocean phenomena based on fluid dynamics. While these models have shown high accuracy at kilometer scales, they are operated with massive computer resources because of their computational complexity.  In recent years, new approaches to solve these models based on machine learning have been put forward. The results suggested that it be possible to reduce the computational complexity by Neural Networks (NNs) instead of classical numerical simulations. In this project, we aim to shed light upon different ways to accelerating physical models using NNs. We test two approaches: Data-Driven Statistical Model (DDSM) and Hybrid Physical-Statistical Model (HPSM) and compare their performance to the classical Process-Driven Physical Model (PDPM). DDSM emulates the physical model by a NN. The HPSM, also known as super-resolution, uses a low-resolution version of the physical model and maps its outputs to the original high-resolution domain via a NN. To evaluate these two methods, we measured their accuracy and their computation time. Our results of idealized experiments with a quasi-geostrophic model [SO3] show that HPSM reduces the computation time by a factor of 3 and it is capable to predict the output of the physical model at high accuracy up to 9.25 days. The DDSM, however, reduces the computation time by a factor of 4 and can predict the physical model output with an acceptable accuracy only within 2 days. These first results are promising and imply the possibility of bringing complex physical models into real time systems with lower-cost computer resources in the future.</p>


Sign in / Sign up

Export Citation Format

Share Document