scholarly journals Angle Sensor Module for Vehicle Steering Device Based on Multi-Track Impulse Ring

Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 526 ◽  
Author(s):  
Seong Woo ◽  
Young Park ◽  
Ju Lee ◽  
Chun Han ◽  
Sungdae Na ◽  
...  

In step with the development of Industry 4.0, research on automatic operation technology and components related to automobiles is continuously being conducted. In particular, the torque angle sensor (TAS) module of the steering wheel system is considered to be a core technology owing to its precise angle, torque sensing, and high-speed signal processing. In the case of conventional TAS modules, in addition to the complicated gear structure, there is an error in angle detection due to the backlash between the main and sub-gear. In this paper, we propose a multi-track encoder-based vehicle steering system, which is incorporated with a TAS module structure that minimizes the number of components and the angle detection error of the module compared with existing TAS modules. We also fabricated and tested an angle detection signal processing board and evaluated it on a test stand. As a result, we could confirm its excellent performance of an average deviation of 0.4° and applicability to actual vehicles by evaluating its electromagnetic interference (EMI) environmental reliability. The ultimate goal of the TAS module is to detect the target steering angle with minimal computation by the steering or main electronic control unit (ECU) to meet the needs of the rapidly growing vehicle technology. The verified angle detection module can be applied to an actual steering system in accordance with the mentioned technical requirements.

2014 ◽  
Vol 574 ◽  
pp. 247-252
Author(s):  
Zong Bin Huang ◽  
Bing Xu ◽  
Zhao Hui Hu ◽  
Zhi Cheng He ◽  
Xiong Sheng Chen

In this paper, finite element method was adopted to solve the Steering wheel shimmy problem. Firstly, finite element model of the whole steering system from the knuckle to the steering wheel is conducted, and be verified by test. After modeling and verification, it is possible for the FE model to identify a natural frequency that contributes reasonably to the shimmy phenomenon in the steering wheel. Secondly the frequency spectrum of acceleration which is obtained based on test is loaded at the knuckle to simulate steering wheel shimmy. Finally, the sequential quadratic programming is performed to optimize steering system structure and improve the isolation performance based on this model. The plate thickness and stiffness of bushing are set as discrete optimization variables, and the Y-direction acceleration of steering wheel at 12 o'clock is set as the objective function. The successful solution of the steering wheel shimmy of a passenger car proves that this method is efficacious.


1991 ◽  
Vol 113 (1) ◽  
pp. 138-142 ◽  
Author(s):  
J. C. Whitehead

A prototype high-speed steering stabilizer for automobiles applies transient steering torques so that the sum of natural steering restoring torque and the control torque is more nearly in phase with steer angle than the natural restoring torque alone. The resulting reduction in the phase lag from steer angle to restoring torque mitigates the steering weave mode. Since steering restoring torque is nearly proportional to vehicle lateral acceleration, weave controller circuitry could subtract instantaneous lateral acceleration from expected steady-state lateral acceleration calculated from steer angle and vehicle speed, and thence command a steering torque actuator depending on the difference signal. The prototype performs the same function using a concentrated mass on the lower steering wheel rim which is passively sensitive to both steer angle and lateral acceleration, thereby applying only transient steering torques in the desired manner at a vehicle speed of 30 m/s. The additional steering system inertia alone affects the weave mode, so a non-stabilizing configuration with the same mass distributed around the steering wheel rim is tested for direct comparison. The experimental data show a dramatic stabilization of weave for the configuration which applies control torque.


2014 ◽  
Vol 575 ◽  
pp. 781-784 ◽  
Author(s):  
Sheikh Muhammad Hafiz Fahami ◽  
Hairi Zamzuri ◽  
Saiful Amri Mazlan ◽  
Sarah Atifah Saruchi

In conventional steering system, during the parking maneuver, driver required large turned on the steering wheel to move the fornt tyre. Thus, it will increase the driver burden when turned the steering wheel. The feature of variable steering ratio (VSR), help to reduce driver burden. Moreover, it improves the vehicle maneuver at lower and high speed. This paper, proposed a control algorithm of variable steering ratio (VSR) in vehicle SBW system. The concept of hyperbolic tangent is used where it not only improved the maneuverability at lower speed, but also reduces the driver burden on the steering wheel. To investigate the effectiveness of the proposed VSR algorithm, the result is compared with conventional steering system


Author(s):  
Xiaodong Wu ◽  
Wenqi Li

To improve vehicle handling performance, a variable steering ratio characteristic for steer-by-wire system is designed. The steering ratio is adjusted by a compensating coefficient according to vehicle longitudinal speed and steering wheel angle. To evaluate the performance of vehicle with variable steering ratio, simulations are conducted based on an objective evaluation index, which consists of quadratic cost functions of vehicle lateral deviation, steering angular speed, vehicle lateral acceleration and roll angle. By using the optimized data from the simulation results, a Takagi-Sugeno fuzzy neural network is designed for the steering ratio control. In order to test and validate the proposed controller, a series of comparison experiments are conducted on a closed-loop driver-vehicle system, including lemniscate curve test and double lane-change test. The results demonstrate that compared with a conventional steering system with fixed steering ratio, the proposed system can not only improve steering agility at low speed and steering stability at high speed, but also reduce driver’s workload in critical driving conditions.


2013 ◽  
Vol 312 ◽  
pp. 679-684
Author(s):  
Jun Wei Qiao ◽  
Jin Fa Xie ◽  
Zhen Wei Yang

To introduce a new type of electric power steering system, the structure and working principle of the system were introduced, and the models of the car, the tire and the steering system were established. The assist characteristic of the power steering and the ideal steering ratio were also designed and optimized. At last, the simulation tests were carried out. The double planetary wheel mechanism is the most important component of the system. With this mechanism, the system synthesizes the force or motion from the steering wheel and the motor. So the power steering and a small steering ratio can be provided at a low speed, and the steering ratio can be changed initiatively at a medium or high speed. Whats more, the steering ability still exists when there is a fault in the system. The simulation results show this steering system can effectively improve the steering portability, low-speed sensitivity, and the vehicle handling stability.


Actuators ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 115
Author(s):  
Teemu Sillanpää ◽  
Alexander Smirnov ◽  
Pekko Jaatinen ◽  
Jouni Vuojolainen ◽  
Niko Nevaranta ◽  
...  

Non-contact rotor position sensors are an essential part of control systems in magnetically suspended high-speed drives. In typical active magnetic bearing (AMB) levitated high-speed machine applications, the displacement of the rotor in the mechanical air gap is measured with commercially available eddy current-based displacement sensors. The aim of this paper is to propose a robust and compact three-dimensional position sensor that can measure the rotor displacement of an AMB system in both the radial and axial directions. The paper presents a sensor design utilizing only a single unified sensor stator and a single shared rotor mounted target piece surface to achieve the measurement of all three measurement axes. The sensor uses an inductive measuring principle to sense the air gap between the sensor stator and rotor piece, which makes it robust to surface variations of the sensing target. Combined with the sensor design, a state of the art fully digital signal processing chain utilizing synchronous in-phase and quadrature demodulation is presented. The feasibility of the proposed sensor design is verified in a closed-loop control application utilizing a 350-kW, 15,000-r/min high-speed industrial induction machine with magnetic bearing suspension. The inductive sensor provides an alternative solution to commercial eddy current displacement sensors. It meets the application requirements and has a robust construction utilizing conventional electrical steel lamination stacks and copper winding.


Sign in / Sign up

Export Citation Format

Share Document