scholarly journals Classification of Tea Aromas Using Multi-Nanoparticle Based Chemiresistor Arrays

Sensors ◽  
2019 ◽  
Vol 19 (11) ◽  
pp. 2547 ◽  
Author(s):  
Tuo Gao ◽  
Yongchen Wang ◽  
Chengwu Zhang ◽  
Zachariah A. Pittman ◽  
Alexandra M. Oliveira ◽  
...  

Nanoparticle based chemical sensor arrays with four types of organo-functionalized gold nanoparticles (AuNPs) were introduced to classify 35 different teas, including black teas, green teas, and herbal teas. Integrated sensor arrays were made using microfabrication methods including photolithography and lift-off processing. Different types of nanoparticle solutions were drop-cast on separate active regions of each sensor chip. Sensor responses, expressed as the ratio of resistance change to baseline resistance (ΔR/R0), were used as input data to discriminate different aromas by statistical analysis using multivariate techniques and machine learning algorithms. With five-fold cross validation, linear discriminant analysis (LDA) gave 99% accuracy for classification of all 35 teas, and 98% and 100% accuracy for separate datasets of herbal teas, and black and green teas, respectively. We find that classification accuracy improves significantly by using multiple types of nanoparticles compared to single type nanoparticle arrays. The results suggest a promising approach to monitor the freshness and quality of tea products.

2003 ◽  
Vol 12 (01) ◽  
pp. 1-16 ◽  
Author(s):  
RICARDO GUTIERREZ-OSUNA ◽  
NILESH U. POWAR

Inspired by the process of olfactory adaptation in biological olfactory systems, this article presents two algorithms that allow a chemical sensor array to reduce its sensitivity to odors previously detected in the environment. The first algorithm is based on a committee machine of linear discriminant functions that operate on multiple subsets of the overall sensory input. Adaptation occurs by depressing the voting strength of discriminant functions that display higher sensitivity to previously detected odors. The second algorithm is based on a topology-preserving linear projection derived from Fisher's class separability criteria. In this case, the process of adaptation is implemented through a reformulation of the between-to-within-class scatter eigenvalue problem. The proposed algorithms are validated on two datasets of binary and ternary mixtures of organic solvents using an array of temperature-modulated metal-oxide chemoresistors.


2019 ◽  
Author(s):  
Ismael Araujo ◽  
Juan Gamboa ◽  
Adenilton Silva

To recognize patterns that are usually imperceptible by human beings has been one of the main advantages of using machine learning algorithms The use of Deep Learning techniques has been promising to the classification problems, especially the ones related to image classification. The classification of gases detected by an artificial nose is one other area where Deep Learning techniques can be used to seek classification improvements. Succeeding in a classification task can result in many advantages to quality control, as well as to preventing accidents. In this work, it is presented some Deep Learning models specifically created to the task of gas classification.


Sensors ◽  
2020 ◽  
Vol 20 (9) ◽  
pp. 2514 ◽  
Author(s):  
Wei Jiang ◽  
Daqi Gao

This paper deals with the classification of stenches, which can stimulate olfactory organs to discomfort people and pollute the environment. In China, the triangle odor bag method, which only depends on the state of the panelist, is widely used in determining odor concentration. In this paper, we propose a stenches detection system composed of an electronic nose and machine learning algorithms to discriminate five typical stenches. These five chemicals producing stenches are 2-phenylethyl alcohol, isovaleric acid, methylcyclopentanone, γ-undecalactone, and 2-methylindole. We will use random forest, support vector machines, backpropagation neural network, principal components analysis (PCA), and linear discriminant analysis (LDA) in this paper. The result shows that LDA (support vector machine (SVM)) has better performance in detecting the stenches considered in this paper.


Automatic classification of magnetic resonance (MR) brain images using machine learning algorithms has a significant role in clinical diagnosis of brain tumour. The higher order spectra cumulant features are powerful and competent tool for automatic classification. The study proposed an effective cumulant-based features to predict the severity of brain tumour. The study at first stage implicates the one-level classification of 2-D discrete wavelet transform (DWT) of taken brain MR image. The cumulants of every sub-bands are then determined to calculate the primary feature vector. Linear discriminant analysis is adopted to extract the discriminative features derived from the primary ones. A three layer feed-forward artificial neural network (ANN) and least square based support vector machine (LS-SVM) algorithms are considered to compute that the brain MR image is either belongs to normal or to one of seven other diseases (eight-class scenario). Furthermore, in one more classification problem, the input MR image is categorized as normal or abnormal (two-class scenario). The correct classification rate (CCR) of LS-SVM is superior than the ANN algorithm thereby the proposed study with LS-SVM attains higher accuracy rate in both classification scenarios of MR images.


2017 ◽  
Vol 4 (1) ◽  
pp. 56-74 ◽  
Author(s):  
Abinash Tripathy ◽  
Santanu Kumar Rath

Sentiment analysis helps to determine hidden intention of the concerned author of any topic and provides an evaluation report on the polarity of any document. The polarity may be positive, negative or neutral. It is observed that very often the data associated with the sentiment analysis consist of the feedback given by various specialists on any topic or product. Thus, the review may be categorized properly into any sort of class based on the polarity, in order to have a good knowledge about the product. This article proposes an approach to classify the review dataset made on basis of sentiment analysis into different polarity groups. Four machine learning algorithms viz., Naive Bayes (NB), Support Vector Machine (SVM), Random Forest, and Linear Discriminant Analysis (LDA) have been considered in this paper for classification process. The obtained result on values of accuracy of the algorithms are critically examined by using different performance parameters, applied on two different datasets.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 60
Author(s):  
Bona Hiu Yan Chow ◽  
Constantino Carlos Reyes-Aldasoro

This paper presents a computer-vision-based methodology for automatic image-based classification of 2042 training images and 284 unseen (test) images divided into 68 categories of gemstones. A series of feature extraction techniques (33 including colour histograms in the RGB, HSV and CIELAB space, local binary pattern, Haralick texture and grey-level co-occurrence matrix properties) were used in combination with different machine-learning algorithms (Logistic Regression, Linear Discriminant Analysis, K-Nearest Neighbour, Decision Tree, Random Forest, Naive Bayes and Support Vector Machine). Deep-learning classification with ResNet-18 and ResNet-50 was also investigated. The optimal combination was provided by a Random Forest algorithm with the RGB eight-bin colour histogram and local binary pattern features, with an accuracy of 69.4% on unseen images; the algorithms required 0.0165 s to process the 284 test images. These results were compared against three expert gemmologists with at least 5 years of experience in gemstone identification, who obtained accuracies between 42.6% and 66.9% and took 42–175 min to classify the test images. As expected, the human experts took much longer than the computer vision algorithms, which in addition provided, albeit marginal, higher accuracy. Although these experiments included a relatively low number of images, the superiority of computer vision over humans is in line with what has been reported in other areas of study, and it is encouraging to further explore the application in gemmology and related areas.


2020 ◽  
pp. 143-163
Author(s):  
Abinash Tripathy ◽  
Santanu Kumar Rath

Sentiment analysis helps to determine hidden intention of the concerned author of any topic and provides an evaluation report on the polarity of any document. The polarity may be positive, negative or neutral. It is observed that very often the data associated with the sentiment analysis consist of the feedback given by various specialists on any topic or product. Thus, the review may be categorized properly into any sort of class based on the polarity, in order to have a good knowledge about the product. This article proposes an approach to classify the review dataset made on basis of sentiment analysis into different polarity groups. Four machine learning algorithms viz., Naive Bayes (NB), Support Vector Machine (SVM), Random Forest, and Linear Discriminant Analysis (LDA) have been considered in this paper for classification process. The obtained result on values of accuracy of the algorithms are critically examined by using different performance parameters, applied on two different datasets.


Author(s):  
Hicham Riri ◽  
Mohammed Ed-Dhahraouy ◽  
Abdelmajid Elmoutaouakkil ◽  
Abderrahim Beni-Hssane ◽  
Farid Bourzgui

The purpose of this study is to investigate computer vision and machine learning methods for classification of orthodontic images in order to provide orthodontists with a solution for multi-class classification of patients’ images to evaluate the evolution of their treatment. Of which, we proposed three algorithms based on extracted features, such as facial features and skin colour using YCbCrcolour space, assigned to nodes of a decision tree to classify orthodontic images: an algorithm for intra-oral images, an algorithm for mould images and an algorithm for extra-oral images. Then, we compared our method by implementing the Local Binary Pattern (LBP) algorithm to extract textural features from images. After that, we applied the principal component analysis (PCA) algorithm to optimize the redundant parameters in order to classify LBP features with six classifiers; Quadratic Support Vector Machine (SVM), Cubic SVM, Radial Basis Function SVM, Cosine K-Nearest Neighbours (KNN), Euclidian KNN, and Linear Discriminant Analysis (LDA). The presented algorithms have been evaluated on a dataset of images of 98 different patients, and experimental results demonstrate the good performances of our proposed method with a high accuracy compared with machine learning algorithms. Where LDA classifier achieves an accuracy of 84.5%.


2020 ◽  
Vol 10 (5) ◽  
pp. 1797 ◽  
Author(s):  
Mera Kartika Delimayanti ◽  
Bedy Purnama ◽  
Ngoc Giang Nguyen ◽  
Mohammad Reza Faisal ◽  
Kunti Robiatul Mahmudah ◽  
...  

Manual classification of sleep stage is a time-consuming but necessary step in the diagnosis and treatment of sleep disorders, and its automation has been an area of active study. The previous works have shown that low dimensional fast Fourier transform (FFT) features and many machine learning algorithms have been applied. In this paper, we demonstrate utilization of features extracted from EEG signals via FFT to improve the performance of automated sleep stage classification through machine learning methods. Unlike previous works using FFT, we incorporated thousands of FFT features in order to classify the sleep stages into 2–6 classes. Using the expanded version of Sleep-EDF dataset with 61 recordings, our method outperformed other state-of-the art methods. This result indicates that high dimensional FFT features in combination with a simple feature selection is effective for the improvement of automated sleep stage classification.


2021 ◽  
Vol 9 (5) ◽  
pp. 1034
Author(s):  
Carlos Sabater ◽  
Lorena Ruiz ◽  
Abelardo Margolles

This study aimed to recover metagenome-assembled genomes (MAGs) from human fecal samples to characterize the glycosidase profiles of Bifidobacterium species exposed to different prebiotic oligosaccharides (galacto-oligosaccharides, fructo-oligosaccharides and human milk oligosaccharides, HMOs) as well as high-fiber diets. A total of 1806 MAGs were recovered from 487 infant and adult metagenomes. Unsupervised and supervised classification of glycosidases codified in MAGs using machine-learning algorithms allowed establishing characteristic hydrolytic profiles for B. adolescentis, B. bifidum, B. breve, B. longum and B. pseudocatenulatum, yielding classification rates above 90%. Glycosidase families GH5 44, GH32, and GH110 were characteristic of B. bifidum. The presence or absence of GH1, GH2, GH5 and GH20 was characteristic of B. adolescentis, B. breve and B. pseudocatenulatum, while families GH1 and GH30 were relevant in MAGs from B. longum. These characteristic profiles allowed discriminating bifidobacteria regardless of prebiotic exposure. Correlation analysis of glycosidase activities suggests strong associations between glycosidase families comprising HMOs-degrading enzymes, which are often found in MAGs from the same species. Mathematical models here proposed may contribute to a better understanding of the carbohydrate metabolism of some common bifidobacteria species and could be extrapolated to other microorganisms of interest in future studies.


Sign in / Sign up

Export Citation Format

Share Document