scholarly journals Automatic Tunnel Crack Detection Based on U-Net and a Convolutional Neural Network with Alternately Updated Clique

Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 717 ◽  
Author(s):  
Gang Li ◽  
Biao Ma ◽  
Shuanhai He ◽  
Xueli Ren ◽  
Qiangwei Liu

Regular crack inspection of tunnels is essential to guarantee their safe operation. At present, the manual detection method is time-consuming, subjective and even dangerous, while the automatic detection method is relatively inaccurate. Detecting tunnel cracks is a challenging task since cracks are tiny, and there are many noise patterns in the tunnel images. This study proposes a deep learning algorithm based on U-Net and a convolutional neural network with alternately updated clique (CliqueNet), called U-CliqueNet, to separate cracks from background in the tunnel images. A consumer-grade DSC-WX700 camera (SONY, Wuxi, China) was used to collect 200 original images, then cracks are manually marked and divided into sub-images with a resolution of 496   ×   496 pixels. A total of 60,000 sub-images were obtained in the dataset of tunnel cracks, among which 50,000 were used for training and 10,000 were used for testing. The proposed framework conducted training and testing on this dataset, the mean pixel accuracy (MPA), mean intersection over union (MIoU), precision and F1-score are 92.25%, 86.96%, 86.32% and 83.40%, respectively. We compared the U-CliqueNet with fully convolutional networks (FCN), U-net, Encoder–decoder network (SegNet) and the multi-scale fusion crack detection (MFCD) algorithm using hypothesis testing, and it’s proved that the MIoU predicted by U-CliqueNet was significantly higher than that of the other four algorithms. The area, length and mean width of cracks can be calculated, and the relative error between the detected mean crack width and the actual mean crack width ranges from −11.20% to 18.57%. The results show that this framework can be used for fast and accurate crack semantic segmentation of tunnel images.

Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 652 ◽  
Author(s):  
Carlo Augusto Mallio ◽  
Andrea Napolitano ◽  
Gennaro Castiello ◽  
Francesco Maria Giordano ◽  
Pasquale D'Alessio ◽  
...  

Background: Coronavirus disease 2019 (COVID-19) pneumonia and immune checkpoint inhibitor (ICI) therapy-related pneumonitis share common features. The aim of this study was to determine on chest computed tomography (CT) images whether a deep convolutional neural network algorithm is able to solve the challenge of differential diagnosis between COVID-19 pneumonia and ICI therapy-related pneumonitis. Methods: We enrolled three groups: a pneumonia-free group (n = 30), a COVID-19 group (n = 34), and a group of patients with ICI therapy-related pneumonitis (n = 21). Computed tomography images were analyzed with an artificial intelligence (AI) algorithm based on a deep convolutional neural network structure. Statistical analysis included the Mann–Whitney U test (significance threshold at p < 0.05) and the receiver operating characteristic curve (ROC curve). Results: The algorithm showed low specificity in distinguishing COVID-19 from ICI therapy-related pneumonitis (sensitivity 97.1%, specificity 14.3%, area under the curve (AUC) = 0.62). ICI therapy-related pneumonitis was identified by the AI when compared to pneumonia-free controls (sensitivity = 85.7%, specificity 100%, AUC = 0.97). Conclusions: The deep learning algorithm is not able to distinguish between COVID-19 pneumonia and ICI therapy-related pneumonitis. Awareness must be increased among clinicians about imaging similarities between COVID-19 and ICI therapy-related pneumonitis. ICI therapy-related pneumonitis can be applied as a challenge population for cross-validation to test the robustness of AI models used to analyze interstitial pneumonias of variable etiology.


Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 949
Author(s):  
Jiangyi Wang ◽  
Min Liu ◽  
Xinwu Zeng ◽  
Xiaoqiang Hua

Convolutional neural networks have powerful performances in many visual tasks because of their hierarchical structures and powerful feature extraction capabilities. SPD (symmetric positive definition) matrix is paid attention to in visual classification, because it has excellent ability to learn proper statistical representation and distinguish samples with different information. In this paper, a deep neural network signal detection method based on spectral convolution features is proposed. In this method, local features extracted from convolutional neural network are used to construct the SPD matrix, and a deep learning algorithm for the SPD matrix is used to detect target signals. Feature maps extracted by two kinds of convolutional neural network models are applied in this study. Based on this method, signal detection has become a binary classification problem of signals in samples. In order to prove the availability and superiority of this method, simulated and semi-physical simulated data sets are used. The results show that, under low SCR (signal-to-clutter ratio), compared with the spectral signal detection method based on the deep neural network, this method can obtain a gain of 0.5–2 dB on simulated data sets and semi-physical simulated data sets.


Author(s):  
Jing-Wei Liu ◽  
Fang-Ling Zuo ◽  
Ying-Xiao Guo ◽  
Tian-Yue Li ◽  
Jia-Ming Chen

AbstractConvolutional neural network (CNN) is recognized as state of the art of deep learning algorithm, which has a good ability on the image classification and recognition. The problems of CNN are as follows: the precision, accuracy and efficiency of CNN are expected to be improved to satisfy the requirements of high performance. The main work is as follows: Firstly, wavelet convolutional neural network (wCNN) is proposed, where wavelet transform function is added to the convolutional layers of CNN. Secondly, wavelet convolutional wavelet neural network (wCwNN) is proposed, where fully connected neural network (FCNN) of wCNN and CNN are replaced by wavelet neural network (wNN). Thirdly, image classification experiments using CNN, wCNN and wCwNN algorithms, and comparison analysis are implemented with MNIST dataset. The effect of the improved methods are as follows: (1) Both precision and accuracy are improved. (2) The mean square error and the rate of error are reduced. (3) The complexitie of the improved algorithms is increased.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xueying Li ◽  
Pingping Fan ◽  
Zongmin Li ◽  
Guangyuan Chen ◽  
Huimin Qiu ◽  
...  

Changes in land cover will cause the changes in the climate and environmental characteristics, which has an important influence on the social economy and ecosystem. The main form of land cover is different types of soil. Compared with traditional methods, visible and near-infrared spectroscopy technology can classify different types of soil rapidly, effectively, and nondestructively. Based on the visible near-infrared spectroscopy technology, this paper takes the soil of six different land cover types in Qingdao, China orchards, woodlands, tea plantations, farmlands, bare lands, and grasslands as examples and establishes a convolutional neural network classification model. The classification results of different number of training samples are analyzed and compared with the support vector machine algorithm. Under the condition that Kennard–Stone algorithm divides the calibration set, the classification results of six different soil types and single six soil types by convolutional neural network are better than those by the support vector machine. Under the condition of randomly dividing the calibration set according to the proportion of 1/3 and 1/4, the classification results by convolutional neural network are also better. The aim of this study is to analyze the feasibility of land cover classification with small samples by convolutional neural network and, according to the deep learning algorithm, to explore new methods for rapid, nondestructive, and accurate classification of the land cover.


2020 ◽  
Vol 7 (2) ◽  
pp. 373
Author(s):  
Teresia R. Savera ◽  
Winsya H. Suryawan ◽  
Agung Wahyu Setiawan

<p>Kanker kulit adalah salah satu jenis kanker yang dapat menyebabkan kematian sehingga diperlukan sebuah aplikasi perangkat lunak yang dapat digunakan untuk membantu melakukan deteksi dini kanker kulit dengan mudah. Sehingga diharapkan deteksi dini kanker kulit dapat terdeteksi lebih cepat. Pada penelitian ini terdapat dua metode yang digunakan untuk melakukan deteksi dini kanker kulit yaitu deteksi dengan klasifikasi secara regresi dan <em>artificial neural network</em> dengan arsitektur <em>convolutional neural network</em>. Akurasi yang diperoleh dengan menggunakan klasifikasi secara regresi adalah sebesar 75%. Sementara, akurasi deteksi yang didapatkan dengan menggunakan <em>convolutional neural network</em> adalah sebesar 76%. Hasil yang diperoleh dari kedua metoda ini masih dapat ditingkatkan pada penelitian lanjutan, yaitu dengan cara melakukan prapengolahan pada set data citra yang digunakan. Sehingga set data yang digunakan memiliki tingkat pencahayaan, sudut (pengambilan), serta ukuran citra yang sama. Apabila tersedia sumber daya komputasi yang besar, akan dilakukan penambahan jumlah citra yang digunakan, baik itu sebagai set data latih maupun uji.</p><p> </p><p><em><strong>Abstract</strong></em></p><p class="Abstract"><em>Skin cancer is one type of cancer that can cause death for many people. Because of this, an application is needed to easily detect skin cancer early that the cancer can be handled with more quickly. In this study there were two methods used to detect skin cancer, namely detection by regression classification and detection by classifying using artificial neural networks with network convolutional architecture. Detection with regression classification gives an accuracy of 75%. While detection using convolutional neural networks gives an accuracy of 76%. These proposed early detection systems can be improved to increase the accuracy. For further development, several image processing techniques will be applied, such as contrast enhancement and color equalization. For future works, if there is more computational resource, more images can be used as dataset and implement the deep learning algorithm to improve the accuracy.</em></p><p><em><strong><br /></strong></em></p>


2021 ◽  
Vol 8 (3) ◽  
pp. 619
Author(s):  
Candra Dewi ◽  
Andri Santoso ◽  
Indriati Indriati ◽  
Nadia Artha Dewi ◽  
Yoke Kusuma Arbawa

<p>Semakin meningkatnya jumlah penderita diabetes menjadi salah satu faktor penyebab semakin tingginya penderita penyakit <em>diabetic retinophaty</em>. Salah satu citra yang digunakan oleh dokter mata untuk mengidentifikasi <em>diabetic retinophaty</em> adalah foto retina. Dalam penelitian ini dilakukan pengenalan penyakit diabetic retinophaty secara otomatis menggunakan citra <em>fundus</em> retina dan algoritme <em>Convolutional Neural Network</em> (CNN) yang merupakan variasi dari algoritme Deep Learning. Kendala yang ditemukan dalam proses pengenalan adalah warna retina yang cenderung merah kekuningan sehingga ruang warna RGB tidak menghasilkan akurasi yang optimal. Oleh karena itu, dalam penelitian ini dilakukan pengujian pada berbagai ruang warna untuk mendapatkan hasil yang lebih baik. Dari hasil uji coba menggunakan 1000 data pada ruang warna RGB, HSI, YUV dan L*a*b* memberikan hasil yang kurang optimal pada data seimbang dimana akurasi terbaik masih dibawah 50%. Namun pada data tidak seimbang menghasilkan akurasi yang cukup tinggi yaitu 83,53% pada ruang warna YUV dengan pengujian pada data latih dan akurasi 74,40% dengan data uji pada semua ruang warna.</p><p> </p><p><em><strong>Abstract</strong></em></p><p class="Abstract"><em>Increasing the number of people with diabetes is one of the factors causing the high number of people with diabetic retinopathy. One of the images used by ophthalmologists to identify diabetic retinopathy is a retinal photo. In this research, the identification of diabetic retinopathy is done automatically using retinal fundus images and the Convolutional Neural Network (CNN) algorithm, which is a variation of the Deep Learning algorithm. The obstacle found in the recognition process is the color of the retina which tends to be yellowish red so that the RGB color space does not produce optimal accuracy. Therefore, in this research, various color spaces were tested to get better results. From the results of trials using 1000 images data in the color space of RGB, HSI, YUV and L * a * b * give suboptimal results on balanced data where the best accuracy is still below 50%. However, the unbalanced data gives a fairly high accuracy of 83.53% with training data on the YUV color space and 74,40% with testing data on all color spaces.</em></p><p><em><strong><br /></strong></em></p>


Author(s):  
Rian Rassetiadi ◽  
Suharjito Suharjito

The level of accuracy in predicting is the key in conducting forex trading activities in gaining profits. Some predictions are made only by using historical currency data to be predicted, this makes predictions less accurate because they do not consider external influences. This study examines external factors that can influence the results of predictions, by looking for the relationship between the value of indices such as NTFSE and S &amp; P 500 and the value of commodities such as gold and silver to the prediction process of EUR / USD. Prediction carried out using a deep learning algorithm with the Convolutional Neural Network method uses 2 1-dimensional convolution layers with ReL activation. The data used is the value of Open, High, Low and Close prices on forex, indices and commodities which are combined into one with the close forex value target for the next 5 days. Testing of EUR / USD test data only gets MSE results of 0.00081894. While the results of testing of the combined test data between EUR / USD, indices and commodities producing MSE vary between 0.00068717 to 0.0109606 where the best combination is a combination of FTSE 100 and Natural Gas values. So it can be concluded that other factors included in predicting have an influence on the results obtained.


Diagnostics ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 803
Author(s):  
Luu-Ngoc Do ◽  
Byung Hyun Baek ◽  
Seul Kee Kim ◽  
Hyung-Jeong Yang ◽  
Ilwoo Park ◽  
...  

The early detection and rapid quantification of acute ischemic lesions play pivotal roles in stroke management. We developed a deep learning algorithm for the automatic binary classification of the Alberta Stroke Program Early Computed Tomographic Score (ASPECTS) using diffusion-weighted imaging (DWI) in acute stroke patients. Three hundred and ninety DWI datasets with acute anterior circulation stroke were included. A classifier algorithm utilizing a recurrent residual convolutional neural network (RRCNN) was developed for classification between low (1–6) and high (7–10) DWI-ASPECTS groups. The model performance was compared with a pre-trained VGG16, Inception V3, and a 3D convolutional neural network (3DCNN). The proposed RRCNN model demonstrated higher performance than the pre-trained models and 3DCNN with an accuracy of 87.3%, AUC of 0.941, and F1-score of 0.888 for classification between the low and high DWI-ASPECTS groups. These results suggest that the deep learning algorithm developed in this study can provide a rapid assessment of DWI-ASPECTS and may serve as an ancillary tool that can assist physicians in making urgent clinical decisions.


Sign in / Sign up

Export Citation Format

Share Document