scholarly journals A Reliable Prognosis Approach for Degradation Evaluation of Rolling Bearing Using MCLSTM

Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1864 ◽  
Author(s):  
Gangjin Huang ◽  
Hongkun Li ◽  
Jiayu Ou ◽  
Yuanliang Zhang ◽  
Mingliang Zhang

Prognostics and health management technology (PHM), a measure to ensure the reliability and safety of the operation of industrial machinery, has attracted attention and application adequately. However, how to use the monitored information to evaluate the degradation of rolling bearings is a significant issue for its predictive maintenance and autonomic logistics. This work presents a reliable health prognosis approach to estimate the health indicator (HI) and remaining useful life (RUL) of rolling bearings. Firstly, to accurately capture the degradation process, a novel health index (HI) is constructed based on correlation kurtosis for different iteration periods and a Gaussian process latency variable model (GPLVM). Then, a multiple convolutional long short-term memory (MCLSTM) network is proposed to predict HI values and RUL values. Finally, we perform experimental datasets of rolling bearings, demonstrating that the presented method surpasses other state-of-the-art prognosis approaches. The results also confirm the feasibility of the presented method in industrial machinery.

Author(s):  
Yiming Guo ◽  
Hui Zhang ◽  
Zhijie Xia ◽  
Chang Dong ◽  
Zhisheng Zhang ◽  
...  

The rolling bearing is the crucial component in the rotating machinery. The degradation process monitoring and remaining useful life prediction of the bearing are necessary for the condition-based maintenance. The commonly used deep learning methods use the raw or processed time domain data as the input. However, the feature extracted by these approaches is insufficient and incomprehensive. To tackle this problem, this paper proposed an improved Deep Convolution Neural Network with the dual-channel input from the time and frequency domain in parallel. The proposed methodology consists of two stages: the incipient failure identification and the degradation process fitting. To verify the effectiveness of the method, the IEEE PHM 2012 dataset is adopted to compare the proposed method and other commonly used approaches. The results show that the improved Deep Convolution Neural Network can effectively describe the degradation process for the rolling bearing.


2021 ◽  
Vol 11 (11) ◽  
pp. 4773
Author(s):  
Qiaoping Tian ◽  
Honglei Wang

High precision and multi information prediction results of bearing remaining useful life (RUL) can effectively describe the uncertainty of bearing health state and operation state. Aiming at the problem of feature efficient extraction and RUL prediction during rolling bearings operation degradation process, through data reduction and key features mining analysis, a new feature vector based on time-frequency domain joint feature is found to describe the bearings degradation process more comprehensively. In order to keep the effective information without increasing the scale of neural network, a joint feature compression calculation method based on redefined degradation indicator (DI) was proposed to determine the input data set. By combining the temporal convolution network with the quantile regression (TCNQR) algorithm, the probability density forecasting at any time is achieved based on kernel density estimation (KDE) for the conditional distribution of predicted values. The experimental results show that the proposed method can obtain the point prediction results with smaller errors. Compared with the existing quantile regression of long short-term memory network(LSTMQR), the proposed method can construct more accurate prediction interval and probability density curve, which can effectively quantify the uncertainty of bearing running state.


Author(s):  
Peng Ding ◽  
Hua Wang ◽  
Yongfen Dai

Diagnosing the failure or predicting the performance state of low-speed and heavy-load slewing bearings is a practical and effective method to reduce unexpected stoppage or optimize the maintenances. Many literatures focus on the performance prediction of small rolling bearings, while studies on slewing bearings' health evaluation are very rare. Among these rare studies, supervised or unsupervised data-driven models are often used alone, few researchers devote to remaining useful life (RUL) prediction using the joint application of two learning modes which could fully take diversity and complexity of slewing bearings' degradation and damage into consideration. Therefore, this paper proposes a clustering-based framework with aids of supervised models and multiple physical signals. Correlation analysis and principle component analysis (PCA)-based multiple sensitive features in time-domain are used to establish the performance recession indicators (PRIs) of torque, temperature, and vibration. Subsequently, these three indicators are divided into several parts representing different degradation periods via optimized self-organizing map (OSOM). Finally, corresponding data-driven life models of these degradation periods are generated. Experimental results indicate that multiple physical signals can effectively describe the degradation process. The proposed clustering-based framework is provided with a more accurate prediction of slewing bearings' RUL and well reflects the performance recession periods.


2018 ◽  
Vol 10 (12) ◽  
pp. 168781401881718 ◽  
Author(s):  
Wentao Mao ◽  
Jianliang He ◽  
Jiamei Tang ◽  
Yuan Li

For bearing remaining useful life prediction problem, the traditional machine-learning-based methods are generally short of feature representation ability and incapable of adaptive feature extraction. Although deep-learning-based remaining useful life prediction methods proposed in recent years can effectively extract discriminative features for bearing fault, these methods tend to less consider temporal information of fault degradation process. To solve this problem, a new remaining useful life prediction approach based on deep feature representation and long short-term memory neural network is proposed in this article. First, a new criterion, named support vector data normalized correlation coefficient, is proposed to automatically divide the whole bearing life as normal state and fast degradation state. Second, deep features of bearing fault with good representation ability can be obtained from convolutional neural network by means of the marginal spectrum in Hilbert–Huang transform of raw vibration signals and health state label. Finally, by considering the temporal information of degradation process, these features are fed into a long short-term memory neural network to construct a remaining useful life prediction model. Experiments are conducted on bearing data sets of IEEE PHM Challenge 2012. The results show the significance of performance improvement of the proposed method in terms of predictive accuracy and numerical stability.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Ying Zhang ◽  
Anchen Wang

The accurate prediction of the remaining useful life (RUL) of rolling bearings is of great significance for a rational formulation of maintenance strategies and the reduction of maintenance costs. According to the two-stage nonlinear degradation characteristics of rolling bearing operation, this paper proposes a prognosis model based on modified stochastic filtering. First, multiple features reextracted from the time domain, frequency domain, and complexity angles, and the baseline Gaussian mixture model (GMM) is established using the normal operating data after spectral regression. The Bayesian-inferred distance (BID) is used as a quantitative indicator to reflect the bearing performance degradation degree. Then, taking multiparameter fusion results as input, the relationship between BID and remaining life is established by the two-stage stochastic filtering model to realize online dynamic remaining useful life prediction. The method in this paper overcomes the difficulty of accurately defining the failure threshold of rolling bearing. At the same time, it reduces the computational burden, avoiding the need of calculating the joint probability distribution for high-dimensional data. Finally, the proposed method has been verified experimentally to have high precision and engineering application value.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Guisheng Hou ◽  
Shuo Xu ◽  
Nan Zhou ◽  
Lei Yang ◽  
Quanhao Fu

Accurate predictions of remaining useful life (RUL) of important components play a crucial role in system reliability, which is the basis of prognostics and health management (PHM). This paper proposed an integrated deep learning approach for RUL prediction of a turbofan engine by integrating an autoencoder (AE) with a deep convolutional generative adversarial network (DCGAN). In the pretraining stage, the reconstructed data of the AE not only participate in its error reconstruction but also take part in the DCGAN parameter training as the generated data of the DCGAN. Through double-error reconstructions, the capability of feature extraction is enhanced, and high-level abstract information is obtained. In the fine-tuning stage, a long short-term memory (LSTM) network is used to extract the sequential information from the features to predict the RUL. The effectiveness of the proposed scheme is verified on the NASA commercial modular aero-propulsion system simulation (C-MAPSS) dataset. The superiority of the proposed method is demonstrated via excellent prediction performance and comparisons with other existing state-of-the-art prognostics. The results of this study suggest that the proposed data-driven prognostic method offers a new and promising prediction approach and an efficient feature extraction scheme.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Yongbin Liu ◽  
Bing He ◽  
Fang Liu ◽  
Siliang Lu ◽  
Yilei Zhao ◽  
...  

Rolling bearings play a pivotal role in rotating machinery. The degradation assessment and remaining useful life (RUL) prediction of bearings are critical to condition-based maintenance. However, sensitive feature extraction still remains a formidable challenge. In this paper, a novel feature extraction method is introduced to obtain the sensitive features through phase space reconstitution (PSR) and joint with approximate diagonalization of Eigen-matrices (JADE). Firstly, the original features are extracted from bearing vibration signals in time and frequency domain. Secondly, the PSR is applied to embed the original features into high dimensional phase space. The between-class and within-class scatter (SS) are calculated to evaluate the feature sensitivity through the phase point distribution of different degradation stages and then different weights are assigned to the corresponding features based on the calculatedSS. Thirdly, the JADE is employed to fuse the weighted features to obtain the advanced features which can better reflect the bearing degradation process. Finally, the advanced features are input into the extreme learning machine (ELM) to train the RUL prediction model. A set of experimental case studies are carried out to verify the effectiveness of the proposed method. The results show that the extracted advanced features can better reflect the degradation process compared to traditional features and could effectively predict the RUL of bearing.


Author(s):  
Feng Yang ◽  
Mohamed Salahuddin

Prognostics and health management (PHM) methodologies are increasingly playing active roles in improving the availability, reliability, efficiency, productivity, and safety of systems in many industries. In predicting the remaining useful life (RUL), this chapter introduces a prognostics framework with health index (HI) formulation, with specific emphasis on incorporating and validating nonlinear HI degradations. The key issue to the success of this framework is how to identify appropriate parameters in describing the behavior of the nonlinear HI degradations. Using exponential HI degradation as an example in predicting the RULs of induction motors, this chapter discusses three different explorations in verifying the existence of good parameter values as well as identifying the appropriate parameters automatically. Comprehensive experiments were carried out with degradation process (DP) data from eight induction motors, and it was discovered that good parameters can be automatically determined with the proposed parameter identification method.


Author(s):  
Pallabi Kakati ◽  
Devendra Dandotiya ◽  
Bhaskar Pal

Abstract In any industrial system, accurate prediction of Remaining Useful Life (RUL) is important for Prognostics and Health Management (PHM), so as to detect breakdown of system well in advance and take proper measures. Different methods are available in the literature that have been proposed for prediction of RUL. Among these methods, the data driven method is accepted to be the most reliable by many researchers, due to the use of real time sensor based vibrational and/or pressure data. These data are acquired in time domain. Methods such as Recurrent Neural Networks (RNNs), Convolutional Neural Network (CNN), Hidden Markov Models (HMMs) are generally applied in this area. Nevertheless, all these methods have issues while dealing with dependencies in these data. In this context, Long Short-Term Memory (LSTM) neural network has been proposed to deal with these dependencies while predicting RUL of any system. The LSTM model has the advantage of retaining time domain information for a long duration of time. However, with the arrival of new data, the model needs to be updated. In this regard, a new online method based on LSTM network is proposed in this paper. The use of online technique offers us to retrain the model as new data arrives, which helps in improving the accuracy of the estimated RUL. To illustrate the application of the proposed online LSTM method, we have used the Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) turbofan dataset. The results show an improved efficiency compared to the previously proposed methods for RUL estimation.


Sign in / Sign up

Export Citation Format

Share Document