scholarly journals Complex Pignistic Transformation-Based Evidential Distance for Multisource Information Fusion of Medical Diagnosis in the IoT

Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 840
Author(s):  
Fuyuan Xiao

Multisource information fusion has received much attention in the past few decades, especially for the smart Internet of Things (IoT). Because of the impacts of devices, the external environment, and communication problems, the collected information may be uncertain, imprecise, or even conflicting. How to handle such kinds of uncertainty is still an open issue. Complex evidence theory (CET) is effective at disposing of uncertainty problems in the multisource information fusion of the IoT. In CET, however, how to measure the distance among complex basis belief assignments (CBBAs) to manage conflict is still an open issue, which is a benefit for improving the performance in the fusion process of the IoT. In this paper, therefore, a complex Pignistic transformation function is first proposed to transform the complex mass function; then, a generalized betting commitment-based distance (BCD) is proposed to measure the difference among CBBAs in CET. The proposed BCD is a generalized model to offer more capacity for measuring the difference among CBBAs. Additionally, other properties of the BCD are analyzed, including the non-negativeness, nondegeneracy, symmetry, and triangle inequality. Besides, a basis algorithm and its weighted extension for multi-attribute decision-making are designed based on the newly defined BCD. Finally, these decision-making algorithms are applied to cope with the medical diagnosis problem under the smart IoT environment to reveal their effectiveness.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Fuyuan Xiao ◽  
Xiao-Guang Yue

In decision-making systems, how to measure uncertain information remains an open issue, especially for information processing modeled on complex planes. In this paper, a new complex entropy is proposed to measure the uncertainty of a complex-valued distribution (CvD). The proposed complex entropy is a generalization of Gini entropy that has a powerful capability to measure uncertainty. In particular, when a CvD reduces to a probability distribution, the complex entropy will degrade into Gini entropy. In addition, the properties of complex entropy, including the nonnegativity, maximum and minimum entropies, and boundedness, are analyzed and discussed. Several numerical examples illuminate the superiority of the newly defined complex entropy. Based on the newly defined complex entropy, a multisource information fusion algorithm for decision-making is developed. Finally, we apply the decision-making algorithm in a medical diagnosis problem to validate its practicability.


Symmetry ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 375
Author(s):  
Wei Xu ◽  
Yi Wan ◽  
Tian-Yu Zuo ◽  
Xin-Mei Sha

In recent years, the development of sensor technology in industry has profoundly changed the way of operation and management in manufacturing enterprises. Due to the popularization and promotion of sensors, the maintenance of machines on the production line are also changing from the subjective experience-based machine maintenance to objective data-driven maintenance decision-making. Therefore, more and more data decision model has been developed through AI technology and intelligence algorithms. Equally important, the information fusion between decision results, which got by data decision model, has also received widespread attention. Information fusion is performed on symmetric data structures. The asymmetric data under the symmetric structure leads to the difference in information fusion results. Therefore, fully considering the potential differences of asymmetric data under a symmetric structure is an important content of information fusion. In view of the above, this paper studies how to make information fusion between different decision results through the framework of D-S evidence theory and discusses the deficiency of D-S evidence theory in detail. Based on D-S evidence theory, then a comprehensive evidence method for information fusion is proposed in this paper. We illustrate the rationality and effectiveness of our method through analysis of experiment case. And, this method is applied to a real case from industry. Finally, the irrationality of the traditional D-S method in the comprehensive decision-making results of machine operation and maintenance was solved by our novel method.


Author(s):  
Lipeng Pan ◽  
Yong Deng

Dempster-Shafer evidence theory can handle imprecise and unknown information, which has attracted many people. In most cases, the mass function can be translated into the probability, which is useful to expand the applications of the D-S evidence theory. However, how to reasonably transfer the mass function to the probability distribution is still an open issue. Hence, the paper proposed a new probability transform method based on the ordered weighted averaging and entropy difference. The new method calculates weights by ordered weighted averaging, and adds entropy difference as one of the measurement indicators. Then achieved the transformation of the minimum entropy difference by adjusting the parameter r of the weight function. Finally, some numerical examples are given to prove that new method is more reasonable and effective.


Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 163 ◽  
Author(s):  
Qian Pan ◽  
Deyun Zhou ◽  
Yongchuan Tang ◽  
Xiaoyang Li ◽  
Jichuan Huang

Dempster-Shafer evidence theory (DST) has shown its great advantages to tackle uncertainty in a wide variety of applications. However, how to quantify the information-based uncertainty of basic probability assignment (BPA) with belief entropy in DST framework is still an open issue. The main work of this study is to define a new belief entropy for measuring uncertainty of BPA. The proposed belief entropy has two components. The first component is based on the summation of the probability mass function (PMF) of single events contained in each BPA, which are obtained using plausibility transformation. The second component is the same as the weighted Hartley entropy. The two components could effectively measure the discord uncertainty and non-specificity uncertainty found in DST framework, respectively. The proposed belief entropy is proved to satisfy the majority of the desired properties for an uncertainty measure in DST framework. In addition, when BPA is probability distribution, the proposed method could degrade to Shannon entropy. The feasibility and superiority of the new belief entropy is verified according to the results of numerical experiments.


2019 ◽  
Vol 14 (1) ◽  
pp. 78-89 ◽  
Author(s):  
Haiping Ren ◽  
Shixiao Xiao ◽  
Hui Zhou

The aim of this paper is to propose a new similarity measure of singlevalued neutrosophic sets (SVNSs). The idea of the construction of the new similarity measure comes from Chi-square distance measure, which is an important measure in the applications of image analysis and statistical inference. Numerical examples are provided to show the superiority of the proposed similarity measure comparing with the existing similarity measures of SVNSs. A weighted similarity is also put forward based on the proposed similarity. Some examples are given to show the effectiveness and practicality of the proposed similarity in pattern recognition, medical diagnosis and multi-attribute decision making problems under single-valued neutrosophic environment.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2137
Author(s):  
Dingyi Gan ◽  
Bin Yang ◽  
Yongchuan Tang

The Dempster–Shafer evidence theory has been widely applied in the field of information fusion. However, when the collected evidence data are highly conflicting, the Dempster combination rule (DCR) fails to produce intuitive results most of the time. In order to solve this problem, the base belief function is proposed to modify the basic probability assignment (BPA) in the exhaustive frame of discernment (FOD). However, in the non-exhaustive FOD, the mass function value of the empty set is nonzero, which makes the base belief function no longer applicable. In this paper, considering the influence of the size of the FOD and the mass function value of the empty set, a new belief function named the extended base belief function (EBBF) is proposed. This method can modify the BPA in the non-exhaustive FOD and obtain intuitive fusion results by taking into account the characteristics of the non-exhaustive FOD. In addition, the EBBF can degenerate into the base belief function in the exhaustive FOD. At the same time, by calculating the belief entropy of the modified BPA, we find that the value of belief entropy is higher than before. Belief entropy is used to measure the uncertainty of information, which can show the conflict more intuitively. The increase of the value of entropy belief is the consequence of conflict. This paper also designs an improved conflict data management method based on the EBBF to verify the rationality and effectiveness of the proposed method.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1816
Author(s):  
Dongsheng Xu ◽  
Xiaolan Wei ◽  
Hui Ding ◽  
Hongqiong Bin

Single-valued neutrosophic sets (SVNSs) can effectively describe the multi-attribute decision-making (MADM) problems which are characterized by incompleteness and uncertainty. Aiming at the MADM problem of SVNSs, a series of methods are proposed to solve the problem, such as the TODIM and PROMETHEE methods. The main idea of the TODIM method is to establish a relative superiority function of scheme relative to other schemes based on the value function of prospect theory, and the ranking of alternatives is determined according to the obtained superiority. In the PROMETHEE method, the decision maker selects the preference function for each attribute according to their preference, and then calculates the priority index, inflow, outflow and net flow according to the difference of the attribute values of scheme, so as to determine the ranking of alternatives. In this paper, a new method based on PROMETHEE and TODIM is proposed to solve the MADM problem under the single-valued neutrosophic environment. Based on the calculation formula of inflow and outflow in PROMETHEE method, and the calculation formula of overall dominance in the TODIM method, a new integrated formula is obtained.


2013 ◽  
Vol 329 ◽  
pp. 344-348
Author(s):  
Shao Pu Zhang ◽  
Tao Feng

Evidence theory is an effective method to deal with uncertainty information. And uncertainty measure is to reflect the uncertainty of an information system. Thus we want to merge evidence theory with uncertainty method in order to measure the roughness of a rough approximation space. This paper discusses the information fusion and uncertainty measure based on rough set theory. First, we propose a new method of information fusion based on the Bayse function, and define a pair of belief function and plausibility function using the fused mass function in an information system. Then we construct entropy for every decision class to measure the roughness of every decision class, and entropy for decision information system to measure the consistence of decision table.


Sign in / Sign up

Export Citation Format

Share Document