scholarly journals Deep Learning for Transient Image Reconstruction from ToF Data

Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1962
Author(s):  
Enrico Buratto ◽  
Adriano Simonetto ◽  
Gianluca Agresti ◽  
Henrik Schäfer ◽  
Pietro Zanuttigh

In this work, we propose a novel approach for correcting multi-path interference (MPI) in Time-of-Flight (ToF) cameras by estimating the direct and global components of the incoming light. MPI is an error source linked to the multiple reflections of light inside a scene; each sensor pixel receives information coming from different light paths which generally leads to an overestimation of the depth. We introduce a novel deep learning approach, which estimates the structure of the time-dependent scene impulse response and from it recovers a depth image with a reduced amount of MPI. The model consists of two main blocks: a predictive model that learns a compact encoded representation of the backscattering vector from the noisy input data and a fixed backscattering model which translates the encoded representation into the high dimensional light response. Experimental results on real data show the effectiveness of the proposed approach, which reaches state-of-the-art performances.

2020 ◽  
Vol 34 (07) ◽  
pp. 11029-11036
Author(s):  
Jiabo Huang ◽  
Qi Dong ◽  
Shaogang Gong ◽  
Xiatian Zhu

Convolutional neural networks (CNNs) have achieved unprecedented success in a variety of computer vision tasks. However, they usually rely on supervised model learning with the need for massive labelled training data, limiting dramatically their usability and deployability in real-world scenarios without any labelling budget. In this work, we introduce a general-purpose unsupervised deep learning approach to deriving discriminative feature representations. It is based on self-discovering semantically consistent groups of unlabelled training samples with the same class concepts through a progressive affinity diffusion process. Extensive experiments on object image classification and clustering show the performance superiority of the proposed method over the state-of-the-art unsupervised learning models using six common image recognition benchmarks including MNIST, SVHN, STL10, CIFAR10, CIFAR100 and ImageNet.


2020 ◽  
Vol 12 (2) ◽  
pp. 21-34
Author(s):  
Mostefai Abdelkader

In recent years, increasing attention is being paid to sentiment analysis on microblogging platforms such as Twitter. Sentiment analysis refers to the task of detecting whether a textual item (e.g., a tweet) contains an opinion about a topic. This paper proposes a probabilistic deep learning approach for sentiments analysis. The deep learning model used is a convolutional neural network (CNN). The main contribution of this approach is a new probabilistic representation of the text to be fed as input to the CNN. This representation is a matrix that stores for each word composing the message the probability that it belongs to a positive class and the probability that it belongs to a negative class. The proposed approach is evaluated on four well-known datasets HCR, OMD, STS-gold, and a dataset provided by the SemEval-2017 Workshop. The results of the experiments show that the proposed approach competes with the state-of-the-art sentiment analyzers and has the potential to detect sentiments from textual data in an effective manner.


Author(s):  
Jun Xiao ◽  
Hao Ye ◽  
Xiangnan He ◽  
Hanwang Zhang ◽  
Fei Wu ◽  
...  

Factorization Machines (FMs) are a supervised learning approach that enhances the linear regression model by incorporating the second-order feature interactions. Despite effectiveness, FM can be hindered by its modelling of all feature interactions with the same weight, as not all feature interactions are equally useful and predictive. For example, the interactions with useless features may even introduce noises and adversely degrade the performance. In this work, we improve FM by discriminating the importance of different feature interactions. We propose a novel model named Attentional Factorization Machine (AFM), which learns the importance of each feature interaction from data via a neural attention network. Extensive experiments on two real-world datasets demonstrate the effectiveness of AFM. Empirically, it is shown on regression task AFM betters FM with a 8.6% relative improvement, and consistently outperforms the state-of-the-art deep learning methods Wide&Deep [Cheng et al., 2016] and DeepCross [Shan et al., 2016] with a much simpler structure and fewer model parameters. Our implementation of AFM is publicly available at: https://github.com/hexiangnan/attentional_factorization_machine


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 542
Author(s):  
Muhammad Mateen ◽  
Tauqeer Safdar Malik ◽  
Shaukat Hayat ◽  
Musab Hameed ◽  
Song Sun ◽  
...  

In diabetic retinopathy (DR), the early signs that may lead the eyesight towards complete vision loss are considered as microaneurysms (MAs). The shape of these MAs is almost circular, and they have a darkish color and are tiny in size, which means they may be missed by manual analysis of ophthalmologists. In this case, accurate early detection of microaneurysms is helpful to cure DR before non-reversible blindness. In the proposed method, early detection of MAs is performed using a hybrid feature embedding approach of pre-trained CNN models, named as VGG-19 and Inception-v3. The performance of the proposed approach was evaluated using publicly available datasets, namely “E-Ophtha” and “DIARETDB1”, and achieved 96% and 94% classification accuracy, respectively. Furthermore, the developed approach outperformed the state-of-the-art approaches in terms of sensitivity and specificity for microaneurysms detection.


2021 ◽  
Vol 13 (22) ◽  
pp. 4599
Author(s):  
Félix Quinton ◽  
Loic Landrieu

While annual crop rotations play a crucial role for agricultural optimization, they have been largely ignored for automated crop type mapping. In this paper, we take advantage of the increasing quantity of annotated satellite data to propose to model simultaneously the inter- and intra-annual agricultural dynamics of yearly parcel classification with a deep learning approach. Along with simple training adjustments, our model provides an improvement of over 6.3% mIoU over the current state-of-the-art of crop classification, and a reduction of over 21% of the error rate. Furthermore, we release the first large-scale multi-year agricultural dataset with over 300,000 annotated parcels.


2020 ◽  
Vol 34 (07) ◽  
pp. 12394-12401 ◽  
Author(s):  
Mingda Wu ◽  
Di Huang ◽  
Yuanfang Guo ◽  
Yunhong Wang

Recently, Human Attribute Recognition (HAR) has become a hot topic due to its scientific challenges and application potentials, where localizing attributes is a crucial stage but not well handled. In this paper, we propose a novel deep learning approach to HAR, namely Distraction-aware HAR (Da-HAR). It enhances deep CNN feature learning by improving attribute localization through a coarse-to-fine attention mechanism. At the coarse step, a self-mask block is built to roughly discriminate and reduce distractions, while at the fine step, a masked attention branch is applied to further eliminate irrelevant regions. Thanks to this mechanism, feature learning is more accurate, especially when heavy occlusions and complex backgrounds exist. Extensive experiments are conducted on the WIDER-Attribute and RAP databases, and state-of-the-art results are achieved, demonstrating the effectiveness of the proposed approach.


Author(s):  
George Kolokolnikov ◽  
Anna Borde ◽  
Victor Skuratov ◽  
Roman Gaponov ◽  
Anastasiya Rumyantseva

The paper is devoted to the development of QRS segmentation system based on deep learning approach. The considered segmentation problem plays an important role in the automatic analysis of heart rhythms, which makes it possible to identify life-threatening pathologies. The main goal of the research is to choose the best segmentation pipeline in terms of accuracy and time-efficiency. Process of ECG-signal analysis is described, and the problem of QRS segmentation is discussed. State-of-the-art algorithms are analyzed in literature review section and the most prominent are chosen for further research. In the course of the research, four hypotheses about appropriate deep learning model are checked: LSTM-based model, 2-input 1-dimensional CNN model, “signal-to-picture” approach based on 2-dimensional CNN, and the simplest 1-dimensional CNN model. All the architectures are tested, and their advantages and disadvantages are discussed. The proposed ECG segmentation pipeline is developed for Holter monitor software.


Sensors ◽  
2019 ◽  
Vol 19 (5) ◽  
pp. 1064 ◽  
Author(s):  
Arne Niitsoo ◽  
Thorsten Edelhäußer ◽  
Ernst Eberlein ◽  
Niels Hadaschik ◽  
Christopher Mutschler

Radio-based locating systems allow for a robust and continuous tracking in industrial environments and are a key enabler for the digitalization of processes in many areas such as production, manufacturing, and warehouse management. Time difference of arrival (TDoA) systems estimate the time-of-flight (ToF) of radio burst signals with a set of synchronized antennas from which they trilaterate accurate position estimates of mobile tags. However, in industrial environments where multipath propagation is predominant it is difficult to extract the correct ToF of the signal. This article shows how deep learning (DL) can be used to estimate the position of mobile objects directly from the raw channel impulse responses (CIR) extracted at the receivers. Our experiments show that our DL-based position estimation not only works well under harsh multipath propagation but also outperforms state-of-the-art approaches in line-of-sight situations.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jian Xing ◽  
Miao Yu ◽  
Shupeng Wang ◽  
Yaru Zhang ◽  
Yu Ding

Several studies have shown that the phone number and call behavior generated by a phone call reveal the type of phone call. By analyzing the phone number rules and call behavior patterns, we can recognize the fraudulent phone call. The success of this recognition heavily depends on the particular set of features that are used to construct the classifier. Since these features are human-labor engineered, any change introduced to the telephone fraud can render these carefully constructed features ineffective. In this paper, we show that we can automate the feature engineering process and, thus, automatically recognize the fraudulent phone call by applying our proposed novel approach based on deep learning. We design and construct a new classifier based on Call Detail Records (CDR) for fraudulent phone call recognition and find that the performance achieved by our deep learning-based approach outperforms competing methods. Experimental results demonstrate the effectiveness of the proposed approach. Specifically, in our accuracy evaluation, the obtained accuracy exceeds 99%, and the most performant deep learning model is 4.7% more accurate than the state-of-the-art recognition model on average. Furthermore, we show that our deep learning approach is very stable in real-world environments, and the implicit features automatically learned by our approach are far more resilient to dynamic changes of a fraudulent phone number and its call behavior over time. We conclude that the ability to automatically construct the most relevant phone number features and call behavior features and perform accurate fraudulent phone call recognition makes our deep learning-based approach a precise, efficient, and robust technique for fraudulent phone call recognition.


Sign in / Sign up

Export Citation Format

Share Document