An Intelligent Self-Service Vending System for Smart Retail
The traditional weighing and selling process of non-barcode items requires manual service, which not only consumes manpower and material resources but is also more prone to errors or omissions of data. This paper proposes an intelligent self-service vending system embedded with a single camera to detect multiple products in real-time performance without any labels, and the system realizes the integration of weighing, identification, and online settlement in the process of non-barcode items. The system includes a self-service vending device and a multi-device data management platform. The flexible configuration of the structure gives the system the possibility of identifying fruits from multiple angles. The height of the system can be adjusted to provide self-service for people of different heights; then, deep learning skill is applied implementing product detection, and real-time multi-object detection technology is utilized in the image-based checkout system. In addition, on the multi-device data management platform, the information docking between embedded devices, WeChat applets, Alipay, and the database platform can be implemented. We conducted experiments to verify the accuracy of the measurement. The experimental results demonstrate that the correlation coefficient R2 between the measured value of the weight and the actual value is 0.99, and the accuracy of non-barcode item prediction is 93.73%. In Yangpu District, Shanghai, a comprehensive application scenario experiment was also conducted, proving that our system can effectively deal with the challenges of various sales situations.