scholarly journals Effect of the Geometrical Constraints to the Wenner Four-Point Electrical Resistivity Test of Reinforced Concrete Slabs

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4622
Author(s):  
Kevin Paolo V. Robles ◽  
Jurng-Jae Yee ◽  
Seong-Hoon Kee

The main objectives of this study are to evaluate the effect of geometrical constraints of plain concrete and reinforced concrete slabs on the Wenner four-point concrete electrical resistivity (ER) test through numerical and experimental investigation and to propose measurement recommendations for laboratory and field specimens. First, a series of numerical simulations was performed using a 3D finite element model to investigate the effects of geometrical constraints (the dimension of concrete slabs, the electrode spacing and configuration, and the distance of the electrode to the edges of concrete slabs) on ER measurements of concrete. Next, a reinforced concrete slab specimen (1500 mm (width) by 1500 mm (length) by 300 mm (thickness)) was used for experimental investigation and validation of the numerical simulation results. Based on the analytical and experimental results, it is concluded that measured ER values of regularly shaped concrete elements are strongly dependent on the distance-to-spacing ratio of ER probes (i.e., distance of the electrode in ER probes to the edges and/or the bottom of the concrete slabs normalized by the electrode spacing). For the plain concrete, it is inferred that the thickness of the concrete member should be at least three times the electrode spacing. In addition, the distance should be more than twice the electrode spacing to make the edge effect almost negligible. It is observed that the findings from the plain concrete are also valid for the reinforced concrete. However, for the reinforced concrete, the ER values are also affected by the presence of reinforcing steel and saturation of concrete, which could cause disruptions in ER measurements

Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7113
Author(s):  
Kevin Paolo V. Robles ◽  
Dong-Won Kim ◽  
Jurng-Jae Yee ◽  
Jin-Wook Lee ◽  
Seong-Hoon Kee

The main objectives of this research are to evaluate the effects of delamination defects on the measurement of electrical resistivity of reinforced concrete slabs through analytical and experimental studies in the laboratory, and to propose a practical guide for electrical resistivity measurements on concrete with delamination defects. First, a 3D finite element model was developed to simulate the variation of electric potential field in concrete over delamination defects with various depths and lateral sizes. Second, for experimental studies, two reinforced concrete slab specimens (1500 mm (width) by 1500 mm (length) by 300 mm (thickness)) with artificial delamination defects of various dimensions and depths were fabricated. Third, the electrical resistivity of concrete over delamination defects in the numerical simulation models and the two concrete slab specimens were evaluated by using a 4-point Wenner probe in accordance with AASHTO (American Association of State Highway and Transportation Office) T-358. It was demonstrated from analytical and experimental studies in this study that shallow (50 mm depth) and deep (250 mm depth) delamination defects resulted in higher and lower electrical resistivity (ER) values, respectively, as compared to measurements performed on solid concrete locations. Furthermore, the increase in size of shallow defects resulted in an increase in concrete resistivity, whereas the increase in sizes of deep delamination defects yielded opposite results. In addition, measurements done directly above the steel reinforcements significantly lowered ER values. Lastly, it was observed from experimental studies that the effect of delamination defects on the values of electrical resistivity decreases as the saturation level of concrete increases.


2019 ◽  
Vol 969 ◽  
pp. 349-354 ◽  
Author(s):  
J. Chithra ◽  
Praveen Nagarajan ◽  
A.S. Sajith ◽  
R.A. Roshan

Nowadays finite element software is used for the design and analysis of reinforced concrete slabs. This paper intends to have a critical review based on a comparison study between the three design methods and to estimate the amount of reinforcement to be provided in each case. The three methods discussed are; the three-layer sandwich model (IRC 112-2011), Wood Armer method (EN1992-1-1:2004) and the conventional design method as per IS 456-2000. In the recently revised code for bridges IRC 112-2011, there is a recommendation to adopt three-layer sandwich model for the design of reinforced concrete slab. In this paper, a critical review of this method is done, and it is used for slabs subjected to uniformly distributed load. This method is illustrated by considering the design of rectangular slab subjected to uniformly distributed load. The results of this method are compared with the results obtained using Wood Armer method and using the moment coefficients suggested in IS 456-2000.


Author(s):  
Youmn Al Rawi ◽  
Yehya Temsah ◽  
Hassan Ghanem ◽  
Ali Jahami ◽  
Mohamad Elani

Many research studies have been conducted on the effect of impact loading on structures, and design procedures were proposed for reinforced concrete (RC) slabs; however the availability of these studies and procedures are limited for prestressed slabs. The proposed research will examine, using numerical analysis, the impact of rock fall on prestressed concrete slabs with equivalent moment capacity reinforced concrete slabs. It is expected that prestressed concrete slabs will have different behavior to resist impact loading compared with traditional reinforced concrete slabs. The thickness of the prestressed concrete slab will be 25cm whereas that of the reinforced concrete slab will be 30cm. The impact loading consists of 500Kg drop weight. The drop height will be 10m, 15m and 20m.The structural analysis is performed using a Finite Element program "ABAQUS". A comparison will be done between both slab types in terms of failure mode, damage, and deflection. It has been found that both slabs failed in punching. However, the RC slab performed better than the prestressed concrete slab with respect to the value of the deflection at mid-span, while both showed punching shear mode of failure.


Author(s):  
Shamsoon Fareed

Loads resulting from activities such as rock fall, heavy drop weights (for e.g. equipment's, heavy machines during installation), missile and aircraft interaction with slabs may results in loading intensity which have higher magnitude as compared to static loading. Based on the velocity of the impacting object at the time of contact, these activities may result in impact loading. Therefore, slabs designed should provide resistance to these accidental loading during their entire operational life. In this study, a dynamic non-linear finite element analyses were conducted to investigate the behavior of the reinforced concrete slabs subjected to high-mass low-velocity impacts. For this purpose, initially an already published impact test results were used to validate the numerical predictions. Following validation, a study was conducted to investigate the influence of the impact velocity on the behavior of the reinforced concrete slab. Based on the numerical investigation, it was found that the velocity of the impacting object has a significant influence on the behavior exhibited by slab under impact loading. Furthermore, it was also found that the behavior of slab under impact is both local and global. Local behavior is associated with the damage caused at the contact area of the slab and the impactor, whereas global behavior refers to the overall deformation of the slab when stress waves move away from the impact zone and travel towards the supports.


Author(s):  
Mohammad Makki Abbass Bilal ◽  
Mohamad Adnan Mohamad

Many types of loading the structure must sustain in addition to dead and live loads according to the function of structural element type that must be taken in analysis.  Dynamic resistance to loading of reinforced concrete slabs using self-compact reactive powder concrete, with different boundary conditions at the sides in addition of static loading was studied. The reinforced concrete slabs were designed under static load according to ACI-318R-2014 and then the adequacy was checked under harmonic dynamic loading. The static loading consists of dead load and residential live load considering according to ASCE-07-2010. Modeling analysis was performed to determine the eigenvalues and eigenvectors values and then frequency response analyses of the slab by finite elements method that adopted for analysis. The results indicated that in case of self-compacted reactive powder concrete rather than normal concrete gave deflection less and also there was a different result of deflection according the type of slab boundary condition supports.


2021 ◽  
Vol 50 (1) ◽  
pp. 227-238
Author(s):  
Yanuar Haryanto ◽  
Nanang Gunawan Wariyatno ◽  
Hsuan-Teh Hu ◽  
Ay Lie Han ◽  
Banu Ardi Hidayat

Reinforced concrete is perhaps the most widely used building material in the world. However, the materials used for reinforcement of concrete i.e. steel is quite expensive and scarcely available in the developing world. As a result, bamboo is considered to be a cheaper replacement with high tensile strength. This research investigated the structural behaviour of bamboo-reinforced concrete slabs used for footplate foundation subjected to concentrated load. For this purpose, four different reinforced concrete slab panels were developed and analyzed. The influence of replacing steel with bamboo for the reinforcement of concrete slabs on their structural behaviour was assessed by determining the load-deflection characteristics, the ultimate load, the stiffness, the ductility, the cracking pattern, and the energy absorption capacity. The results showed that in comparison to steel reinforced concrete slabs, the strength of 82% can be acquired by the bamboo reinforced slabs. Furthermore, ductility demonstrated by the two types of specimens was almost equivalent i.e. up to 93%. Those indicated that the structural behaviour demonstrated by bamboo reinforced slabs is quite comparable to that of steel reinforced concrete slabs. Therefore, bamboo can prove to be a promising substitute for steel in concrete reinforcement. Future studies may further examine this opportunity.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7152
Author(s):  
Zuzana Marcalikova ◽  
Vlastimil Bilek ◽  
Oldrich Sucharda ◽  
Radim Cajka

Research on the interaction between slabs and subsoil involves the field of materials engineering, concrete structures, and geotechnics. In the vast majority of cases, research focuses on only one of these areas, whereas for advanced study and computer simulations, detailed knowledge of the whole task is required. Among the new knowledge and information upon which this article focuses is the evaluation of subsoil stress using specialized pressure cells, along with detailed measurements of the deformation of a fiber-reinforced concrete slab. From a design point of view, this research is focused on the issue of the center of the cross section and the influence of eccentricity. Knowledge in this area is not yet comprehensively available for fiber-reinforced concrete slabs, where 2D deformation sections of the slab and 3D deformation surfaces of the slab are used in experiments. The experimental program includes a centrically and eccentrically loaded slab. These are structural elements that were tested on a specialized device. Both slabs had the same concrete recipe, with a dispersed reinforcement content of 25 kg/m3. The dimensions of the slab were 2000 × 2000 × 150 mm. Laboratory tests assessed compressive strength, the modulus of elasticity, splitting tensile strength, and bending tensile strength. Based on approximate data from the 3D deformation surfaces, an evaluation of the load-displacement diagrams for the center of the slab and for the center of eccentricity was performed. In conclusion, an overall evaluation and discussion of the results relies on experiments and the mechanical properties of fiber-reinforced concrete.


Fibers ◽  
2019 ◽  
Vol 7 (8) ◽  
pp. 68
Author(s):  
Abdulkhaliq A. Jaafer ◽  
Raid AL-Shadidi ◽  
Saba L. Kareem

The present experimental work investigates the applicability and performance of a new strengthening method for concrete slabs, intended to increase their punching resistance using combination layers of steel wire mesh with epoxy attached to the concrete slabs’ tension face. Six simply supported square reinforced concrete slab specimens were tested up to failure under a central concentrated load. The main parameters in the study are the concrete compressive strength (30 MPa and 65 MPa) and the configuration of a bundle externally fixed to the tension side of the tested slabs. The experimental results appeared to greatly enhance the performance of the specimens, as they were externally strengthenined under this new method. When compared to the control slabs, the punching load and stiffness of the strengthened slabs increased up to 28% and 21%, respectively.


2019 ◽  
Vol 97 ◽  
pp. 06022
Author(s):  
Alexander Tusnin ◽  
Alexey Kolyago

Reinforced concrete floors and steel beams are widely used in buildings and structures for various purposes. Reinforced concrete overlaps can be cast-in or precast of hollow-core slabs. The most effective floors in which the concrete slab is located in the compressed area of cross-section, in steel beams in the tension zone, and shifting forces, arising between concrete slab and the steel beam, are perceived by anchors. Precast slabs in comparison with cast-in ones have less labor-intensive performance, the beam spacing is equal to the span of reinforced concrete slabs, there are no intermediate beams in such overlaps, that allows to reduce the floor thickness. The inclusion of precast in steel-concrete cross-section requires joints with steel beams, which requires using of special anchors. Anchor perceives shear forces and ensures the joint operation of the plate and the steel beam. In addition, for beams with narrow flange, the anchor device can provide the required width of the support slabs. The calculation of the attachment points of the anchors to the steel beam is carried out using three variants of calculation methods, which allow to determine the forces acting on the anchor. For practical application, a wire-element model has been proposed and managed to get forces in a steel beam, slab and anchors the width of the slab recommended by the standards should be included in the calculation model.


Sign in / Sign up

Export Citation Format

Share Document