scholarly journals The SF12 Well in LoRaWAN: Problem and End-Device-Based Solutions

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6478
Author(s):  
Lluís Casals ◽  
Carles Gomez ◽  
Rafael Vidal

LoRaWAN has become a popular technology for the Internet of Things (IoT) device connectivity. One of the expected properties of LoRaWAN is high network scalability. However, LoRaWAN network performance may be compromised when even a relatively small number of devices use link-layer reliability. After failed frame delivery, such devices typically tend to reduce their physical layer bit rate by increasing their spreading factor (SF). This reaction increases channel utilization, which may further degrade network performance, even into congestion collapse. When this problem arises, all the devices performing reliable frame transmission end up using SF12 (i.e., the highest SF in LoRaWAN). In this paper, we identify and characterize the described network condition, which we call the SF12 Well, in a range of scenarios and by means of extensive simulations. The results show that by using alternative SF-management techniques it is possible to avoid the problem, while achieving a packet delivery ratio increase of up to a factor of 4.7.

2017 ◽  
Vol 9 (3) ◽  
Author(s):  
Ana Oktaviana ◽  
Doan Perdana ◽  
Ridha Muldina Negara

The increasing needs and demands of diverse services by the users to be able to exchange and obtain information in real time, reliable, and flexible to be one of the problems faced by existing communication technology. WLAN on the IEEE 802.11 standard is one of the wireless technologies that can be the solution of the problem. It has a relatively small area of ??communication that is between 20-70 meters only, only able to serve up to 2007 stations, and has considerable energy consumption, causing some systems contained in the WLAN in IEEE 802.11 standard less work maximally. With these shortcomings, the WLAN on the IEEE 802.11 standard introduces a new task group called IEEE 802.11ah. IEEE 802.11ah is a new WLAN standard working on the 900 MHz frequency spectrum, a 1 kilometer communications coverage area, capable of serving 8192 stations with new AID hierarchies, has lower energy consumption and can increase throughput value by RAW mechanism. This study will make changes to the number of RAW slots in the IEEE 802.11ah to see how they affect the network performance. In this research it is found that the change of RAW slot number influence to network performance, in this case is throughput, average delay, packet delivery ratio and energy consumption.


2021 ◽  
Author(s):  
Jeferson Rodrigues Cotrim ◽  
João Henrique Kleinschmidt

LoRaWAN is one of the most popular LPWAN technology due to the facility to implement applications that require a low cost, low energy consumption, low data rate, and large coverage area. A LoRaWAN network is composed of end-devices that transmit data to gateways, forming a single-hop star topology. Multihop networks are receiving the attention of the LoRaWAN community since it allows to extend the coverage area and improve the energy efficiency,<br>thus prolonging the network lifetime. In this paper, we propose an analytical model for multihop LoRaWAN networks.<br>We investigate the energy consumption, throughput, delay, and packet delivery ratio of single-hop and multihop relay<br>networks. The results showed that the network performance could be improved with relay nodes, giving insights to new<br>multihop proposals for LoRaWAN.


Author(s):  
Sunil Kumar K N ◽  
Shiva Shankar

Objective: The conventional Ad Hoc On-Demand Distance Vector (AODV) routing algorithm, route discovery methods pose route failure resulting in data loss and routing overhead. In the proposed method, needs significant low energy consumption while routing from one node to another node by considering the status of node forwards the packet. So that while routing it avoids unnecessary control overhead and improves the network performance. Methods: Particle Swarm Optimization (PSO) algorithm is a nature- inspired, population-based algorithm. Particle Swarm Optimization (PSO) is a Computational Intelligence technique which optimizes the objective function. It works by considering that every member of the swarm contributes in finding the ideal solution by keeping a track of their own best known location and the best-known location of the group and keeps updating them whenever there is a change and hence minimizes the objective fitness function. The fitness function which we considered here is the Node lifetime, Link Lifetime and available Bandwidth. If these parameters are with good then status of node will be strong and hence routing of packet over those nodes will reduce delay and improves network performance. Result: To verify the feasibility and effectiveness of our proposal, the routing performance of AODV and PSO-AODV is compared with respect to various network metrics like Network Lifetime, packet delivery ratio and routing overhead and validated the result by comparing both routing algorithm using Network Simulator 2. The results of the PSO-AODV has outperformed the AODV in terms of low energy, less end to end delay and high packet delivery ratio and less control overhead. Conclusion: Here we proposed to use Particle Swarm Optimization in order to obtain the more suitable parameters for the decision making. The existing AODV protocol was modified to make a decision to recover from route failure; at the link failure predecessor node implementing PSO based energy prediction concept and using weights for each argument considered in the decision function. The fitness values for each weight were found through PSO basic form. We observed that the PSO showed satisfactory behaviour improvement than the performance of AODV for all metrics on the investigated scenarios.


2018 ◽  
Vol 14 (4) ◽  
pp. 155014771877253 ◽  
Author(s):  
Mohammed Abdulhakim Al-Absi ◽  
Ahmed Abdulhakim Al-Absi ◽  
TaeYong Kim ◽  
Hoon Jae Lee

Developing a secure and smart intelligent transport system for both safety and non-safety application services requires a certain guarantee of network performance, especially in terms of throughput and packet collision performance. The vehicular ad hoc network propagation is strongly affected due to varying nature of the environment. The existing radio propagation path loss models are designed by using mean additional attenuation sophisticated fading models. However, these models do not consider the obstacle caused due to the obstacle of the vehicle in line of sight of the transmitting and receiving vehicle. Thus, the attenuation signal at the receiving vehicles/devices is affected. To address this issue, we present an obstacle-based radio propagation model that considers the effect caused due to the presence of obstructing vehicle in line of sight. This model is evaluated under different environmental conditions (i.e. city, highway, and rural) by varying the speed of vehicles and vehicles’ density. The performance of the model is evaluated in terms of throughput, collision, transmission efficiency, and packet delivery ratio. The overall result shows that the proposed obstacle-based throughput model is efficient considering varied speed and density. For instance, in the city environment, the model achieves an average improvement of 9.98% and 25.02% for throughput performance over other environments by varying the speed and density of devices respectively and an improvement of 15.04% for packet delivery ratio performance over other environments considering varied speed of devices.


2021 ◽  
Author(s):  
Jeferson Rodrigues Cotrim ◽  
João Henrique Kleinschmidt

LoRaWAN is one of the most popular LPWAN technology due to the facility to implement applications that require a low cost, low energy consumption, low data rate, and large coverage area. A LoRaWAN network is composed of end-devices that transmit data to gateways, forming a single-hop star topology. Multihop networks are receiving the attention of the LoRaWAN community since it allows to extend the coverage area and improve the energy efficiency,<br>thus prolonging the network lifetime. In this paper, we propose an analytical model for multihop LoRaWAN networks.<br>We investigate the energy consumption, throughput, delay, and packet delivery ratio of single-hop and multihop relay<br>networks. The results showed that the network performance could be improved with relay nodes, giving insights to new<br>multihop proposals for LoRaWAN.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4813
Author(s):  
Faisal Abdulaziz Alfouzan ◽  
Seyed Mohammad Ghoreyshi ◽  
Alireza Shahrabi ◽  
Mahsa Sadeghi Ghahroudi

Underwater sensor networks (UWSNs) have recently attracted much attention due to their ability to discover and monitor the aquatic environment. However, acoustic communication has posed some significant challenges, such as high propagation delay, low available bandwidth, and high bit error rate. Therefore, proposing a cross-layer protocol is of high importance to the field to integrate different communication functionalities (i.e, an interaction between data link layer and network layer) to interact in a more reliable and flexible manner to overcome the consequences of applying acoustic signals. In this paper, a novel Cross-Layer Mobile Data gathering (CLMD) scheme for Underwater Sensor Networks (UWSNs) is presented to improve the performance by providing the interaction between the MAC and routing layers. In CLMD, an Autonomous Underwater Vehicle (AUV) is used to periodically visit a group of clusters which are responsible for data collection from members. The communications are managed by using a distributed cross-layer solution to enhance network performance in terms of packet delivery and energy saving. The cluster heads are replaced with other candidate members at the end of each operational phase to prolong the network lifetime. The effectiveness of CLMD is verified through an extensive simulation study which reveals the performance improvement in the energy-saving, network lifetime, and packet delivery ratio with varying number of nodes. The effects of MAC protocols are also studied by studying the network performance under various MAC protocols in terms of packet delivery ratio, goodput, and energy consumption with varying density of nodes.


Author(s):  
Ana Oktaviana ◽  
Doan Perdana ◽  
Ridha Muldina Negara

IEEE 802.11ah is a new task group on the IEEE 802.11 standard designed to work on the 900 MHz. It is with a range of communication coverage up to 1kilometer, lower energy consumption, and up to 8191 stations. There are two types of STAs in 802.11ah: sensor type to support sensor service and non-sensor type for offload service. In this research, it only focuses on non-sensor STA. For non-sensor STA, maximizing throughput is more important than power consumption. This research aims to see the performance of IEEE 802.1 1ah with Enhanced Distributed Channel Access (EDCA). To achieve that purpose, a mechanism is needed to provide guarantees various services required by theSTA. EDCA is an access mechanism used to set the Quality of Service (QoS) for the IEEE 802.11 standard through modifications in MAC layer. In this research,it focuses on one of the EDCA parameters, Arbitration Inter-Frame Space (AIFS). In addition, this research also focuses on the 802.11ah feature is Restricted Access Window (RAW) by changing the number of the RAW groups. From the results of the research, it is found that the improvement scheme with Arbitration Inter-Frame Space Number (AIFSN) value AC BK = 2, AC BE = 1, AC VI = 1, AC VO = 1 has better performance compared to the default scheme with AIFSN value AC BK = 7, AC BE = 3, AC VI = 2, AC VO = 2) with an average throughput of 1.504598 Mbps, average overall delay of 0.066242 second and average PDR of 62%. In addition, changes in the number of RAW groups and RAW slots affect network performance. This feature can improve the value of throughput, average delay, and Packet Delivery Ratio. The goals of this research is to know the effect of AIFSN value changes on AIFSN parameters, variation of RAW group and RAW slot number to throughput,average delay and packet delivery ratio.


2021 ◽  
Vol 23 (05) ◽  
pp. 526-544
Author(s):  
Ashwini V. Jatti ◽  
◽  
Dr V. J. K. Kishor Sonti ◽  

This study presents sinkhole attack detection and prevention using agent-based algorithm. In this algorithm, agents are used to provide information to all node from its reliable neighbors by negotiation in three steps, thus nodes may not be able to pay the attention to the traffic made by sinkhole attacker. In this work, network scale of 500×500 m2 square areas have been considered. Series of simulation are carried in each experiment. Every simulation run is being organized to work for 10mins. Network performance is evaluated in terms of throughput, packet delivery ratio, jitter, delay in packets delivery, data packets received, data packets drop using network simulations software. Network simulation results depicts that in proposed algorithm, throughput increases by 15 to 20 percent, packet delivery ratio increases by 30 to 40%, decrease in the jitter by 10 to 15 %, delay in packets delivery is decreased by 15 to 20 %, data packets received are increased by 15 to 20 % and number of the data packets drop are decreased by 5 to 15 %. Based on simulation results throughput, packet delivery ratio and data packets received increased in proposed agent-based algorithm. However, it is observed that, jitter, delay in packets delivery and data packets drop were decreased.


Author(s):  
Abdelhadi Eloudrhiri Hassani ◽  
◽  
Aicha Sahel ◽  
Abdelmajid Badri

The diversity of Internet of Things applications require a flexible routing protocol to cope with several constraints. In this context, the RPL protocol was designed to meet the needs of IoT. RPL relies on an objective function based on specific metrics to fulfill its routing strategy. The single routing metric problem leads generally to non-optimized routes selection. As a consequence, two major issues emerge, mainly the node’s congestion due to the high number of forwarded packets, also the greedy energy consumption by those nodes that conduct to fast batteries draining. In that purpose, Forwarding Traffic Consciousness Objective Function has been proposed, which combines three routing metrics, namely hop count, RSSI and a newly designed Forwarded Traffic Metric (FTM). The proposed method, evaluated using COOJA against ETX and Energy based RPL, showed a packet delivery ratio increase respectively with 2% and 11% in low and high traffics, considerably reduces the power consumption with approximately 47% as well as it achieves a good balance of traffic managed by the relay nodes.


2020 ◽  
Vol 16 (12) ◽  
pp. 155014772097927
Author(s):  
Cheonyong Kim ◽  
Joobum Kim ◽  
Jaiseung Kwak ◽  
Kiwook Kim ◽  
Woojin Seok

LoRa/LoRaWAN is growing rapidly as an underlying technology for the Internet of Things because of its long-range connectivity and low power. However, its limited scalability, owing to spread spectrum–based modulation and contention-based medium access control, impedes its use in emerging massive applications. In this study, we propose a downlink transmission scheme for enhancing the scalability of LoRa networks. The proposed scheme consists of two mechanisms. First, a modulation parameter is adjusted using the different transmission power limitations between the gateways and end devices to reduce downlink duration. Second, the timing of downlink traffic is selected based on uplink traffic concentration analysis. The proposed scheme reduces the uplink failure, and consequently, allows more end devices to participate in the network. The simulation results show that the proposed scheme is superior to the standard protocol in terms of the packet delivery ratio.


Sign in / Sign up

Export Citation Format

Share Document