scholarly journals Dynamic Service Function Chaining Orchestration in a Multi-Domain: A Heuristic Approach Based on SRv6

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6563
Author(s):  
Yutong Wu ◽  
Jinhe Zhou

With the emergence of virtualization technology, Network Function Virtualization (NFV) and Software Defined Networking (SDN) make the network function abstract from the hardware and allow it to be run on virtual machines. These technologies can help to provide more efficient services to users by Service Function Chaining (SFC). The sequence of multiple VNFs required by network operators to perform traffic steering is called SFC. Mapping and deploying SFC on the physical network can enable users to obtain customized services in time. At present, a key problem in deploying SFC is how to reduce network resource consumption and load pressure while ensuring the corresponding services for users. In this paper, we first introduce an NFV architecture for SFC deployment, and illustrate the SFC orchestration process which is based on SRv6 in multi-domain scenario. Then, we propose an effective SFC dynamic orchestration algorithm. First, we use Breadth-First Search algorithm to traverse network and find the shortest path for deploying VNFs. Next, we use the improved Ant Colony Optimization algorithm to generate the optimal deployment scheme. Finally, we conduct a series of experiments to verify the performance of our algorithm. Compared with other deployment algorithms, the results show that our solution effectively optimizes end-to-end delay, bandwidth resource consumption and load balancing.

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
V. Eramo ◽  
A. Tosti ◽  
E. Miucci

The Network Function Virtualization (NFV) technology aims at virtualizing the network service with the execution of the single service components in Virtual Machines activated on Commercial-off-the-shelf (COTS) servers. Any service is represented by the Service Function Chain (SFC) that is a set of VNFs to be executed according to a given order. The running of VNFs needs the instantiation of VNF instances (VNFI) that in general are software components executed on Virtual Machines. In this paper we cope with the routing and resource dimensioning problem in NFV architectures. We formulate the optimization problem and due to its NP-hard complexity, heuristics are proposed for both cases of offline and online traffic demand. We show how the heuristics works correctly by guaranteeing a uniform occupancy of the server processing capacity and the network link bandwidth. A consolidation algorithm for the power consumption minimization is also proposed. The application of the consolidation algorithm allows for a high power consumption saving that however is to be paid with an increase in SFC blocking probability.


2020 ◽  
Vol 7 (7) ◽  
pp. 6116-6131 ◽  
Author(s):  
Gang Sun ◽  
Run Zhou ◽  
Jian Sun ◽  
Hongfang Yu ◽  
Athanasios V. Vasilakos

Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 57
Author(s):  
Hefei Hu ◽  
Chen Yang ◽  
Lingyi Xu ◽  
Tangyijia Song ◽  
Bonaho Bocochi Dalia

With network function virtualization (NFV) expanding from network center to edge, the service function chain (SFC) will gradually approach users to provide lower delay and higher-quality services. User mobility seriously affects the quality of service (QoS) provided by the mobile-aware SFC. Therefore, we must migrate the SFC to provide continuous services. In the user estimable movement scenario with a known mobile path and estimable arrival time, we establish the estimation model of user arrival time to obtain the estimated arrival time. Then, to reduce the time that the user is waiting for the migration completion, we propose a softer migration strategy migrating mobile-aware SFC before the user arrives at the corresponding access node. Moreover, for the problem of routing and bandwidth allocation (RBA), to reduce the migration failure rate, the paper proposes a path load adaptive routing and bandwidth allocation (PLARBA) algorithm adjusting the migration bandwidth according to the path load. The experimental results show that the proposed algorithm has significant advantages in reducing the user’s waiting time by more than 90%, decreasing migration failure rate by up to 75%, and improving QoS compared to the soft migration strategy and two RBA algorithms.


2020 ◽  
Vol 7 (7) ◽  
pp. 5760-5772 ◽  
Author(s):  
Gang Sun ◽  
Zhu Xu ◽  
Hongfang Yu ◽  
Xi Chen ◽  
Victor Chang ◽  
...  

2019 ◽  
Vol 8 (2) ◽  
pp. 34
Author(s):  
Yansen Xu ◽  
Ved P. Kafle

A service function chain (SFC) is an ordered virtual network function (VNF) chain for processing traffic flows to deliver end-to-end network services in a virtual networking environment. A challenging problem for an SFC in this context is to determine where to deploy VNFs and how to route traffic between VNFs of an SFC on a substrate network. In this paper, we formulate an SFC placement problem as an integer linear programing (ILP) model, and propose an availability-enhanced VNF placing scheme based on the layered graphs approach. To improve the availability of SFC deployment, our scheme distributes VNFs of an SFC to multiple substrate nodes to avoid a single point of failure. We conduct numerical analysis and computer simulation to validate the feasibility of our SFC scheme. The results show that the proposed scheme outperforms well in different network scenarios in terms of end-to-end delay of the SFC and computation time cost.


2019 ◽  
Vol 9 (23) ◽  
pp. 5167
Author(s):  
Vincenzo Eramo ◽  
Francesco G. Lavacca ◽  
Tiziana Catena

Network Function Virtualization is based on the virtualization of the network functions and it is a new technology allowing for a more flexible allocation of cloud and bandwidth resources. In order to employ the flexibility of the technology and to adapt its use according to the traffic variation, reconfigurations of the cloud and bandwidth resources are needed by means of both migration of the Virtual Machines executing the network functions and reconfiguration of circuits interconnecting the Virtual Machines. The objective of the paper is to study the impact of the maximum number of switch reconfigurations on the cost saving that the Networking Function Virtualization technology allows us to achieve. The problem is studied in the case of a scenario with an elastic optical network interconnecting datacenters in which the Virtual Machines are executed. The problem can be formulated as an Integer Linear Programming one introducing a constraint on the maximum number of switch reconfigurations but due to its computational complexity we propose a low computational complexity heuristic allowing for results close to the optimization ones. The results show how the limitation on the number of possible reconfigurations has to be taken into account to evaluate the effectiveness in terms of cost saving that the Virtual Machine migrations in Network Function Virtualization environment allows us to achieve.


Sign in / Sign up

Export Citation Format

Share Document