scholarly journals SPETS: Secure and Privacy-Preserving Energy Trading System in Microgrid

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8121
Author(s):  
Ahmed Samy ◽  
Haining Yu ◽  
Hongli Zhang ◽  
Guangyao Zhang

Recently, the development of distributed renewable energy resources, smart devices, and smart grids empowers the emergence of peer-to-peer energy trading via local energy markets. However, due to security and privacy concerns in energy trading, sensitive information of energy traders could be leaked to an adversary. In addition, malicious users could perform attacks against the energy market, such as collusion, double spending, and repudiation attacks. Moreover, network attacks could be executed by external attackers against energy networks, such as eavesdropping, data spoofing, and tampering attacks. To tackle the abovementioned attacks, we propose a secure and privacy-preserving energy trading system (SPETS). First, a permissioned energy blockchain is presented to perform secure energy transactions between energy sellers and buyers. Second, a discrete-time double auction is proposed for energy allocation and pricing. Third, the concept of reputation scores is adopted to guarantee market reliability and trust. The proposed energy system is implemented using Hyperledger Fabric (HF) where the chaincode is utilized to control the energy market. Theoretical analysis proves that SPETS is resilient to several security attacks. Simulation results demonstrate the increase in sellers’ and buyers’ welfare by approximately 76.5% and 26%, respectively. The proposed system ensures trustfulness and guarantees efficient energy allocation. The benchmark analysis proves that SPETS consumes few resources in terms of memory and disk usage, CPU, and network utilization.

2019 ◽  
Vol 9 (8) ◽  
pp. 1561 ◽  
Author(s):  
Naiyu Wang ◽  
Xiao Zhou ◽  
Xin Lu ◽  
Zhitao Guan ◽  
Longfei Wu ◽  
...  

With the rapid growth of renewable energy resources, energy trading has been shifting from the centralized manner to distributed manner. Blockchain, as a distributed public ledger technology, has been widely adopted in the design of new energy trading schemes. However, there are many challenging issues in blockchain-based energy trading, e.g., low efficiency, high transaction cost, and security and privacy issues. To tackle these challenges, many solutions have been proposed. In this survey, the blockchain-based energy trading in the electrical power system is thoroughly investigated. Firstly, the challenges in blockchain-based energy trading are identified and summarized. Then, the existing energy trading schemes are studied and classified into three categories based on their main focuses: energy transaction, consensus mechanism, and system optimization. Blockchain-based energy trading has been a popular research topic, new blockchain architectures, models and products are continually emerging to overcome the limitations of existing solutions, forming a virtuous circle. The internal combination of different blockchain types and the combination of blockchain with other technologies improve the blockchain-based energy trading system to better satisfy the practical requirements of modern power systems. However, there are still some problems to be solved, for example, the lack of regulatory system, environmental challenges and so on. In the future, we will strive for a better optimized structure and establish a comprehensive security assessment model for blockchain-based energy trading system.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7484
Author(s):  
Yuki Matsuda ◽  
Yuto Yamazaki ◽  
Hiromu Oki ◽  
Yasuhiro Takeda ◽  
Daishi Sagawa ◽  
...  

To further implement decentralized renewable energy resources, blockchain based peer-to-peer (P2P) energy trading is gaining attention and its architecture has been proposed with virtual demonstrations. In this paper, to further socially implement this concept, a blockchain based peer to peer energy trading system which could coordinate with energy control hardware was constructed, and a demonstration experiment was conducted. Previous work focused on virtually matching energy supply and demand via blockchain P2P energy markets, and our work pushes this forward by demonstrating the possibility of actual energy flow control. In this demonstration, Plug-in Hybrid Electrical Vehicles(PHEVs) and Home Energy Management Systems(HEMS) actually used in daily life were controlled in coordination with the blockchain system. In construction, the need of a multi-tagged continuous market was found and proposed. In the demonstration experiment, the proposed blockchain market and hardware control interface was proven capable of securing and stably transmitting energy within the P2P energy system. Also, by the implementation of multi-tagged energy markets, the number of transactions required to secure the required amount of electricity was reduced.


Symmetry ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1687 ◽  
Author(s):  
Mahmood A. Al-shareeda ◽  
Mohammed Anbar ◽  
Selvakumar Manickam ◽  
Iznan H. Hasbullah

The security and privacy issues in vehicular ad hoc networks (VANETs) are often addressed with schemes based on either public key infrastructure, group signature, or identity. However, none of these schemes appropriately address the efficient verification of multiple VANET messages in high-density traffic areas. Attackers could obtain sensitive information kept in a tamper-proof device (TPD) by using a side-channel attack. In this paper, we propose an identity-based conditional privacy-preserving authentication scheme that supports a batch verification process for the simultaneous verification of multiple messages by each node. Furthermore, to thwart side-channel attacks, vehicle information in the TPD is periodically and frequently updated. Finally, since the proposed scheme does not utilize the bilinear pairing operation or the Map-To-Point hash function, its performance outperforms other schemes, making it viable for large-scale VANETs deployment.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4484 ◽  
Author(s):  
Mina Farmanbar ◽  
Kiyan Parham ◽  
Øystein Arild ◽  
Chunming Rong

Nowadays, the importance of energy management and optimization by means of smart devices has arisen as an important issue. On the other hand, the intelligent application of smart devices stands as a key element in establishing smart cities, which have been suggested as the solution to complicated future urbanization difficulties in coming years. Considering the scarcity of traditional fossil fuels in the near future, besides their ecological problems the new smart grids have demonstrated the potential to merge the non-renewable and renewable energy resources into each other leading to the reduction of environmental problems and optimizing operating costs. The current paper clarifies the importance of smart grids in launching smart cities by reviewing the advancement of micro/nano grids, applications of renewable energies, energy-storage technologies, smart water grids in smart cities. Additionally a review of the major European smart city projects has been carried out. These will offer a wider vision for researchers in the operation, monitoring, control and audit of smart-grid systems.


Author(s):  
Neelu khare ◽  
Kumaran U.

The tremendous growth of social networking systems enables the active participation of a wide variety of users. This has led to an increased probability of security and privacy concerns. In order to solve the issue, the article defines a secure and privacy-preserving approach to protect user data across Cloud-based online social networks. The proposed approach models social networks as a directed graph, such that a user can share sensitive information with other users only if there exists a directed edge from one user to another. The connectivity between data users data is efficiently shared using an attribute-based encryption (ABE) with different data access levels. The proposed ABE technique makes use of a trapdoor function to re-encrypt the data without the use of proxy re-encryption techniques. Experimental evaluation states that the proposed approach provides comparatively better results than the existing techniques.


Author(s):  
Govind P. Gupta

Internet of Things (IoT) offers the capability to connect and integrate both digital and physical objects to the internet and to enable machine-to-machine and machine-to-human communication or interactions services. The real-time adoptions and deployments of such systems for different applications such as smart cities, smart grids, smart homes, or smart environments require guaranteed security and privacy-enabled IoT services. This is due to fact that devices in the IoT generate, process, and exchange huge amounts of safety-critical data as well as privacy-sensitive information. In order to ensure secure and safe operation and to avoid cyber-attacks on such systems, it is crucial to incorporate security and privacy measures to countermeasure the different possible attacks. This chapter presents different security and privacy requirements and a taxonomy of security threats in the context of the IoT. In addition, the authors survey the most relevant defense strategies available in the literature related to IoT security with their merits and demerits.


Sensors ◽  
2019 ◽  
Vol 19 (22) ◽  
pp. 4862 ◽  
Author(s):  
Tejasvi Alladi ◽  
Vinay Chamola ◽  
Joel J. P. C. Rodrigues ◽  
Sergei A. Kozlov

With the integration of Wireless Sensor Networks and the Internet of Things, the smart grid is being projected as a solution for the challenges regarding electricity supply in the future. However, security and privacy issues in the consumption and trading of electricity data pose serious challenges in the adoption of the smart grid. To address these challenges, blockchain technology is being researched for applicability in the smart grid. In this paper, important application areas of blockchain in the smart grid are discussed. One use case of each area is discussed in detail, suggesting a suitable blockchain architecture, a sample block structure and the potential blockchain technicalities employed in it. The blockchain can be used for peer-to-peer energy trading, where a credit-based payment scheme can enhance the energy trading process. Efficient data aggregation schemes based on the blockchain technology can be used to overcome the challenges related to privacy and security in the grid. Energy distribution systems can also use blockchain to remotely control energy flow to a particular area by monitoring the usage statistics of that area. Further, blockchain-based frameworks can also help in the diagnosis and maintenance of smart grid equipment. We also discuss several commercial implementations of blockchain in the smart grid. Finally, various challenges to be addressed for integrating these two technologies are discussed.


Entropy ◽  
2020 ◽  
Vol 22 (2) ◽  
pp. 226 ◽  
Author(s):  
Omaji Samuel ◽  
Ahmad Almogren ◽  
Atia Javaid ◽  
Mansour Zuair ◽  
Ibrar Ullah ◽  
...  

The International Energy Agency has projected that the total energy demand for electricity in sub-Saharan Africa (SSA) is expected to rise by an average of 4% per year up to 2040. It implies that ~620 million people are living without electricity in SSA. Going with the 2030 vision of the United Nations that electricity should be accessible to all, it is important that new technology and methods are provided. In comparison to other nations worldwide, smart grid (SG) is an emerging technology in SSA. SG is an information technology-enhanced power grid, which provides a two-way communication network between energy producers and customers. Also, it includes renewable energy, smart meters, and smart devices that help to manage energy demands and reduce energy generation costs. However, SG is facing inherent difficulties, such as energy theft, lack of trust, security, and privacy issues. Therefore, this paper proposes a blockchain-based decentralized energy system (BDES) to accelerate rural and urban electrification by improving service delivery while minimizing the cost of generation and addressing historical antipathy and cybersecurity risk within SSA. Additionally, energy insufficiency and fixed pricing schemes may raise concerns in SG, such as the imbalance of order. The paper also introduces a blockchain-based energy trading system, which includes price negotiation and incentive mechanisms to address the imbalance of order. Moreover, existing models for energy planning do not consider the effect of fill rate (FR) and service level (SL). A blockchain levelized cost of energy (BLCOE) is proposed as the least-cost solution that measures the impact of energy reliability on generation cost using FR and SL. Simulation results are presented to show the performance of the proposed model and the least-cost option varies with relative energy generation cost of centralized, decentralized and BDES infrastructure. Case studies of Burkina Faso, Cote d’Ivoire, Gambia, Liberia, Mali, and Senegal illustrate situations that are more suitable for BDES. For other SSA countries, BDES can cost-effectively service a large population and regions. Additionally, BLCOE reduces energy costs by approximately 95% for battery and 75% for the solar modules. The future BLCOE varies across SSA on an average of about 0.049 $/kWh as compared to 0.15 $/kWh of an existing system in the literature.


Author(s):  
Shivlal Mewada ◽  
Sita Sharan Gautam ◽  
Pradeep Sharma

A large amount of data is generated through healthcare applications and medical equipment. This data is transferred from one piece of equipment to another and sometimes also communicated over a global network. Hence, security and privacy preserving are major concerns in the healthcare sector. It is seen that traditional anonymization algorithms are viable for sanitization process, but not for restoration task. In this work, artificial bee colony-based privacy preserving model is developed to address the aforementioned issues. In the proposed model, ABC-based algorithm is adopted to generate the optimal key for sanitization of sensitive information. The effectiveness of the proposed model is tested through restoration analysis. Furthermore, several popular attacks are also considered for evaluating the performance of the proposed privacy preserving model. Simulation results of the proposed model are compared with some popular existing privacy preserving models. It is observed that the proposed model is capable of preserving the sensitive information in an efficient manner.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2452
Author(s):  
Faiza Loukil ◽  
Chirine Ghedira-Guegan ◽  
Khouloud Boukadi ◽  
Aïcha-Nabila Benharkat

Data analytics based on the produced data from the Internet of Things (IoT) devices is expected to improve the individuals’ quality of life. However, ensuring security and privacy in the IoT data aggregation process is a non-trivial task. Generally, the IoT data aggregation process is based on centralized servers. Yet, in the case of distributed approaches, it is difficult to coordinate several untrustworthy parties. Fortunately, the blockchain may provide decentralization while overcoming the trust problem. Consequently, blockchain-based IoT data aggregation may become a reasonable choice for the design of a privacy-preserving system. To this end, we propose PrivDA, a Privacy-preserving IoT Data Aggregation scheme based on the blockchain and homomorphic encryption technologies. In the proposed system, each data consumer can create a smart contract and publish both terms of service and requested IoT data. Thus, the smart contract puts together into one group potential data producers that can answer the consumer’s request and chooses one aggregator, the role of which is to compute the group requested result using homomorphic computations. Therefore, group-level aggregation obfuscates IoT data, which complicates sensitive information inference from a single IoT device. Finally, we deploy the proposal on a private Ethereum blockchain and give the performance evaluation.


Sign in / Sign up

Export Citation Format

Share Document