smart devices
Recently Published Documents


TOTAL DOCUMENTS

2643
(FIVE YEARS 1528)

H-INDEX

32
(FIVE YEARS 13)

Author(s):  
Muhammad Azmi Sait ◽  
Muhammad Anshari Ali

This exploratory study aims to assess and investigate Brunei Darussalam’s readiness in developing and applying big data technologies for its public and private sectors, using Social, Technological, Environmental and Policy (STEP) framework. The results show that the population are digitally literate (Social) and utilises smart devices as well as internet network connectivity that is widely offered by the local telecommunications company (Technology). The government of Brunei Darussalam established multiple digital transformation initiatives including implementation of 5G connectivity as well as digital economy masterplan to digitally transformed in the near future (Environment). Regardless of the absence of national digital data privacy policy (Policy) in Brunei, the recent nation’s successful big data application in public sector – BruHealth Application – to contain Covid-19 community spread was achieved. Alas, the existence of such policy in the near future will create opportunities for the local private sectors to capitalise big data technologies to their business strategies.


2022 ◽  
Vol 18 (2) ◽  
pp. 1-28
Author(s):  
Xiaoyu Ji ◽  
Yushi Cheng ◽  
Juchuan Zhang ◽  
Yuehan Chi ◽  
Wenyuan Xu ◽  
...  

With the widespread use of smart devices, device authentication has received much attention. One popular method for device authentication is to utilize internally measured device fingerprints, such as device ID, software or hardware-based characteristics. In this article, we propose DeMiCPU , a stimulation-response-based device fingerprinting technique that relies on externally measured information, i.e., magnetic induction (MI) signals emitted from the CPU module that consists of the CPU chip and its affiliated power-supply circuits. The key insight of DeMiCPU is that hardware discrepancies essentially exist among CPU modules and thus the corresponding MI signals make promising device fingerprints, which are difficult to be modified or mimicked. We design a stimulation and a discrepancy extraction scheme and evaluate them with 90 mobile devices, including 70 laptops (among which 30 are of totally identical CPU and operating system) and 20 smartphones. The results show that DeMiCPU can achieve 99.7% precision and recall on average, and 99.8% precision and recall for the 30 identical devices, with a fingerprinting time of 0.6~s. The performance can be further improved to 99.9% with multi-round fingerprinting. In addition, we implement a prototype of DeMiCPU docker, which can effectively reduce the requirement of test points and enlarge the fingerprinting area.


2022 ◽  
Vol 22 (1) ◽  
pp. 1-21
Author(s):  
Iram Bibi ◽  
Adnan Akhunzada ◽  
Jahanzaib Malik ◽  
Muhammad Khurram Khan ◽  
Muhammad Dawood

Volunteer Computing provision of seamless connectivity that enables convenient and rapid deployment of greener and cheaper computing infrastructure is extremely promising to complement next-generation distributed computing systems. Undoubtedly, without tactile Internet and secure VC ecosystems, harnessing its full potentials and making it an alternative viable and reliable computing infrastructure is next to impossible. Android-enabled smart devices, applications, and services are inevitable for Volunteer computing. Contrarily, the progressive developments of sophisticated Android malware may reduce its exponential growth. Besides, Android malwares are considered the most potential and persistent cyber threat to mobile VC systems. To secure Android-based mobile volunteer computing, the authors proposed MulDroid, an efficient and self-learning autonomous hybrid (Long-Short-Term Memory, Convolutional Neural Network, Deep Neural Network) multi-vector Android malware threat detection framework. The proposed mechanism is highly scalable with well-coordinated infrastructure and self-optimizing capabilities to proficiently tackle fast-growing dynamic variants of sophisticated malware threats and attacks with 99.01% detection accuracy. For a comprehensive evaluation, the authors employed current state-of-the-art malware datasets (Android Malware Dataset, Androzoo) with standard performance evaluation metrics. Moreover, MulDroid is compared with our constructed contemporary hybrid DL-driven architectures and benchmark algorithms. Our proposed mechanism outperforms in terms of detection accuracy with a trivial tradeoff speed efficiency. Additionally, a 10-fold cross-validation is performed to explicitly show unbiased results.


2022 ◽  
Vol 29 (2) ◽  
pp. 1-30
Author(s):  
Radhika Garg ◽  
Hua Cui

Smart devices are increasingly being designed for, and adopted in, the home environment. Prior scholarship has investigated the challenges that users face as they take up these devices in their homes. However, little is known about when and how users or potential users would prefer future domestic Internet of Things (IoT) to support their activities in home settings. To fill this gap, we conducted two co-design workshops, an in-home activity between the two sessions, and pre- and post-study interviews with 18 adult participants, who had diverse levels of prior experience of IoT use. Our findings contribute new insights into how smart home devices could adapt their behavior based on social contexts; how to re-imagine agency and support useful intelligibility; and how to resolve user-driven conflict by providing appropriate information about those with whom devices are shared. Finally, based on these findings, we discuss the implications of our work and provide a set of design considerations from which designers of future smart home technologies can benefit.


This exploratory study aims to assess and investigate Brunei Darussalam’s readiness in developing and applying big data technologies for its public and private sectors, using Social, Technological, Environmental and Policy (STEP) framework. The results show that the population are digitally literate (Social) and utilises smart devices as well as internet network connectivity that is widely offered by the local telecommunications company (Technology). The government of Brunei Darussalam established multiple digital transformation initiatives including implementation of 5G connectivity as well as digital economy masterplan to digitally transformed in the near future (Environment). Regardless of the absence of national digital data privacy policy (Policy) in Brunei, the recent nation’s successful big data application in public sector – BruHealth Application – to contain Covid-19 community spread was achieved. Alas, the existence of such policy in the near future will create opportunities for the local private sectors to capitalise big data technologies to their business strategies.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 664
Author(s):  
Samira Afzal ◽  
Laisa C. C. De Biase ◽  
Geovane Fedrecheski ◽  
William T. Pereira ◽  
Marcelo K. Zuffo

The Internet of Things (IoT) leverages added valued services by the wide spread of connected smart devices. The Swarm Computing paradigm considers a single abstraction layer that connects all kinds of devices globally, from sensors to super computers. In this context, the Low-Power Wide-Area Network (LPWAN) emerges, spreading out connection to the IoT end devices. With the upsides of long-range, low power and low cost, LPWAN presents major limitations regarding data transmission capacity, throughput, supported packet length and quantity per day limitation. This situation makes LPWAN systems with limited interoperability integrate with systems based on REpresentational State Transfer (REST). This work investigates how to connect web-based IoT applications with LPWANs. The analysis was carried out studying the number of packets generated for a use case of REST-based IoT over LPWAN, specifically the Swarm OS over LoRaWAN. The work also presents an analysis of the impact of using promising schemes for lower communication load. We evaluated Constrained Application Protocol (CoAP), Static Context Header Compression (SCHC) and Concise Binary Object Representation (CBOR) to make transmission over the restricted links of LPWANs possible. The attained results show the reduction of 98.18% packet sizes while using SCHC and CBOR compared to HTTP and JSON by sending fewer packets with smaller sizes.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 608
Author(s):  
Cameron Aume ◽  
Keith Andrews ◽  
Shantanu Pal ◽  
Alice James ◽  
Avishkar Seth ◽  
...  

Nowadays, there is tremendous growth in the Internet of Things (IoT) applications in our everyday lives. The proliferation of smart devices, sensors technology, and the Internet makes it possible to communicate between the digital and physical world seamlessly for distributed data collection, communication, and processing of several applications dynamically. However, it is a challenging task to monitor and track objects in real-time due to the distinct characteristics of the IoT system, e.g., scalability, mobility, and resource-limited nature of the devices. In this paper, we address the significant issue of IoT object tracking in real time. We propose a system called ‘TrackInk’ to demonstrate our idea. TrackInk will be capable of pointing toward and taking pictures of visible satellites in the night sky, including but not limited to the International Space Station (ISS) or the moon. Data will be collected from sensors to determine the system’s geographical location along with its 3D orientation, allowing for the system to be moved. Additionally, TrackInk will communicate with and send data to ThingSpeak for further cloud-based systems and data analysis. Our proposed system is lightweight, highly scalable, and performs efficiently in a resource-limited environment. We discuss a detailed system’s architecture and show the performance results using a real-world hardware-based experimental setup.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 607
Author(s):  
Mayuresh Sunil Pardeshi ◽  
Ruey-Kai Sheu ◽  
Shyan-Ming Yuan

Authentication is essential for the prevention of various types of attacks in fog/edge computing. Therefore, a novel mode-based hash chain for secure mutual authentication is necessary to address the Internet of Things (IoT) devices’ vulnerability, as there have been several years of growing concerns regarding their security. Therefore, a novel model is designed that is stronger and effective against any kind of unauthorized attack, as IoT devices’ vulnerability is on the rise due to the mass production of IoT devices (embedded processors, camera, sensors, etc.), which ignore the basic security requirements (passwords, secure communication), making them vulnerable and easily accessible. Furthermore, crackable passwords indicate that the security measures taken are insufficient. As per the recent studies, several applications regarding its requirements are the IoT distributed denial of service attack (IDDOS), micro-cloud, secure university, Secure Industry 4.0, secure government, secure country, etc. The problem statement is formulated as the “design and implementation of dynamically interconnecting fog servers and edge devices using the mode-based hash chain for secure mutual authentication protocol”, which is stated to be an NP-complete problem. The hash-chain fog/edge implementation using timestamps, mode-based hash chaining, the zero-knowledge proof property, a distributed database/blockchain, and cryptography techniques can be utilized to establish the connection of smart devices in large numbers securely. The hash-chain fog/edge uses blockchain for identity management only, which is used to store the public keys in distributed ledger form, and all these keys are immutable. In addition, it has no overhead and is highly secure as it performs fewer calculations and requires minimum infrastructure. Therefore, we designed the hash-chain fog/edge (HCFE) protocol, which provides a novel mutual authentication scheme for effective session key agreement (using ZKP properties) with secure protocol communications. The experiment outcomes proved that the hash-chain fog/edge is more efficient at interconnecting various devices and competed favorably in the benchmark comparison.


2022 ◽  
Vol 2022 ◽  
pp. 1-12
Author(s):  
Myoungbeom Chung

Currently, many people enjoy videos and music content through their smart devices while using public transportation. However, because passengers focus so much on content on their smart devices, they sometimes forget to disembark and miss their destination stations. Therefore, in this paper, we propose an application that can notify users via smart devices when they approach the drop-off point in public transportation using an inaudible high frequency. Inaudible frequency signals are generated with announcements from speakers installed on subways and city buses. Smart devices receive and analyze the signals through their built-in microphones and notify users when they reach the drop-off point. We tested destination notifications with the proposed system and 10 smart devices to evaluate its performance. According to the test results, the proposed system showed 99.4% accuracy on subways and 99.2% accuracy on city buses. Moreover, we compared these results to those using only subway app in subways, and our proposed system achieved far better outcomes. Thus, the proposed system could be a useful technology for notifying smart device users when to get off public transport, and it will become an innovative technology for global public transportation by informing users of their desired stations using speakers.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Jiangdong Lu ◽  
Dongfang Li ◽  
Penglong Wang ◽  
Fen Zheng ◽  
Meng Wang

Today, with increasing information technology such as the Internet of Things (IoT) in human life, interconnection and routing protocols need to find optimal solution for safe data transformation with various smart devices. Therefore, it is necessary to provide an enhanced solution to address routing issues with respect to new interconnection methodologies such as the 6LoWPAN protocol. The artificial neural network (ANN) is based on the structure of intelligent systems as a branch of machine interference, has shown magnificent results in previous studies to optimize security-aware routing protocols. In addition, IoT devices generate large amounts of data with variety and accuracy. Therefore, higher performance and better data handling can be achieved when this technology incorporates data for sending and receiving nodes in the environment. Therefore, this study presents a security-aware routing mechanism for IoT technologies. In addition, a comparative analysis of the relationship between previous approaches discusses with quality of service (QoS) factors such as throughput and accuracy for improving routing mechanism. Experimental results show that the use of time-division multiple access (TDMA) method to schedule the sending and receiving of data and the use of the 6LoWPAN protocol when routing the sending and receiving of data can carry out attacks with high accuracy.


Sign in / Sign up

Export Citation Format

Share Document