Comparative Study of Markerless Vision-Based Gait Analyses for Person Re-Identification
The model-based gait analysis of kinematic characteristics of the human body has been used to identify individuals. To extract gait features, spatiotemporal changes of anatomical landmarks of the human body in 3D were preferable. Without special lab settings, 2D images were easily acquired by monocular video cameras in real-world settings. The 2D and 3D locations of key joint positions were estimated by the 2D and 3D pose estimators. Then, the 3D joint positions can be estimated from the 2D image sequences in human gait. Yet, it has been challenging to have the exact gait features of a person due to viewpoint variance and occlusion of body parts in the 2D images. In the study, we conducted a comparative study of two different approaches: feature-based and spatiotemporal-based viewpoint invariant person re-identification using gait patterns. The first method is to use gait features extracted from time-series 3D joint positions to identify an individual. The second method uses a neural network, a Siamese Long Short Term Memory (LSTM) network with the 3D spatiotemporal changes of key joint positions in a gait cycle to classify an individual without extracting gait features. To validate and compare these two methods, we conducted experiments with two open datasets of the MARS and CASIA-A datasets. The results show that the Siamese LSTM outperforms the gait feature-based approaches on the MARS dataset by 20% and 55% on the CASIA-A dataset. The results show that feature-based gait analysis using 2D and 3D pose estimators is premature. As a future study, we suggest developing large-scale human gait datasets and designing accurate 2D and 3D joint position estimators specifically for gait patterns. We expect that the current comparative study and the future work could contribute to rehabilitation study, forensic gait analysis and early detection of neurological disorders.