scholarly journals The Use of the Velocity Selective Recording Technique to Reveal the Excitation Properties of the Ulnar Nerve in Pigs

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 58
Author(s):  
Felipe Rettore Andreis ◽  
Benjamin Metcalfe ◽  
Taha Al Muhammadee Janjua ◽  
Winnie Jensen ◽  
Suzan Meijs ◽  
...  

Decoding information from the peripheral nervous system via implantable neural interfaces remains a significant challenge, considerably limiting the advancement of neuromodulation and neuroprosthetic devices. The velocity selective recording (VSR) technique has been proposed to improve the classification of neural traffic by combining temporal and spatial information through a multi-electrode cuff (MEC). Therefore, this study investigates the feasibility of using the VSR technique to characterise fibre type based on the electrically evoked compound action potentials (eCAP) propagating along the ulnar nerve of pigs in vivo. A range of electrical stimulation parameters (amplitudes of 50 μA–10 mA and pulse durations of 100 μs, 500 μs, 1000 μs, and 5000 μs) was applied on a cutaneous and a motor branch of the ulnar nerve in nine Danish landrace pigs. Recordings were made with a 14 ring MEC and a delay-and-add algorithm was used to convert the eCAPs into the velocity domain. The results revealed two fibre populations propagating along the cutaneous branch of the ulnar nerve, with mean velocities of 55 m/s and 21 m/s, while only one dominant fibre population was found for the motor branch, with a mean velocity of 63 m/s. Because of its simplicity to provide information on the fibre selectivity and direction of propagation of nerve fibres, VSR can be implemented to advance the performance of the bidirectional control of neural prostheses and bioelectronic medicine applications.

1996 ◽  
Vol 24 (3) ◽  
pp. 325-331
Author(s):  
Iain F. H. Purchase

The title of this paper is challenging, because the question of how in vitro methods and results contribute to human health risk assessment is rarely considered. The process of risk assessment usually begins with hazard assessment, which provides a description of the inherent toxicological properties of the chemical. The next step is to assess the relevance of this to humans, i.e. the human hazard assessment. Finally, information on exposure is examined, and risk can then be assessed. In vitro methods have a limited, but important, role to play in risk assessment. The results can be used for classification and labelling; these are methods of controlling exposure, analogous to risk assessment, but without considering exposure. The Ames Salmonella test is the only in vitro method which is incorporated into regulations and used widely. Data from this test can, at best, lead to classification of a chemical with regard to genotoxicity, but cannot be used for classification and labelling on their own. Several in vitro test systems which assess the topical irritancy and corrosivity of chemicals have been reasonably well validated, and the results from these tests can be used for classification. The future development of in vitro methods is likely to be slow, as it depends on the development of new concepts and ideas. The in vivo methods which currently have reasonably developed in vitro alternatives will be the easiest to replace. The remaining in vivo methods, which provide toxicological information from repeated chronic dosing, with varied endpoints and by mechanisms which are not understood, will be more difficult to replace.


HAND ◽  
1982 ◽  
Vol os-14 (1) ◽  
pp. 38-40 ◽  
Author(s):  
N. P. Packer ◽  
G. R. Fisk

A compression lesion of the distal part of the terminal motor branch of the ulnar nerve is presented. One similar case has been previously described (McDowell, 1977) but some unusual features are recorded here. The reported clinical varieties of lesions of the ulnar nerve in the hand are listed (Table 1).


2009 ◽  
Vol 22 (10) ◽  
pp. 1036-1046 ◽  
Author(s):  
Mariacristina Valerio ◽  
Valeria Panebianco ◽  
Alessandro Sciarra ◽  
Marcello Osimani ◽  
Stefano Salsiccia ◽  
...  

Blood ◽  
2008 ◽  
Vol 112 (12) ◽  
pp. 4384-4399 ◽  
Author(s):  
Elaine S. Jaffe ◽  
Nancy Lee Harris ◽  
Harald Stein ◽  
Peter G. Isaacson

AbstractIn the past 50 years, we have witnessed explosive growth in the understanding of normal and neoplastic lymphoid cells. B-cell, T-cell, and natural killer (NK)–cell neoplasms in many respects recapitulate normal stages of lymphoid cell differentiation and function, so that they can be to some extent classified according to the corresponding normal stage. Likewise, the molecular mechanisms involved the pathogenesis of lymphomas and lymphoid leukemias are often based on the physiology of the lymphoid cells, capitalizing on deregulated normal physiology by harnessing the promoters of genes essential for lymphocyte function. The clinical manifestations of lymphomas likewise reflect the normal function of lymphoid cells in vivo. The multiparameter approach to classification adopted by the World Health Organization (WHO) classification has been validated in international studies as being highly reproducible, and enhancing the interpretation of clinical and translational studies. In addition, accurate and precise classification of disease entities facilitates the discovery of the molecular basis of lymphoid neoplasms in the basic science laboratory.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Zhuping Jin ◽  
Yanxi Pei

Recently, overwhelming evidence has proven that hydrogen sulfide (H2S), which was identified as a gasotransmitter in animals, plays important roles in diverse physiological processes in plants as well. With the discovery and systematic classification of the enzymes producing H2Sin vivo, a better understanding of the mechanisms by which H2S influences plant responses to various stimuli was reached. There are many functions of H2S, including the modulation of defense responses and plant growth and development, as well as the regulation of senescence and maturation. Additionally, mounting evidence indicates that H2S signaling interacts with plant hormones, hydrogen peroxide, nitric oxide, carbon monoxide, and other molecules in signaling pathways.


2015 ◽  
Vol 115 ◽  
pp. S765
Author(s):  
A. Mans ◽  
R.A. Rozendaal ◽  
P. González ◽  
M. Van Herk ◽  
B.J. Mijnheer
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document