Spatial Information Enrichment using NLP-based Classification of Space Objects for School Bldgs. in Korea

2019 ◽  
Author(s):  
Jaeyeol Song ◽  
Jinsung Kim ◽  
Jin-Kook Lee
Author(s):  
D. Akbari ◽  
M. Moradizadeh ◽  
M. Akbari

<p><strong>Abstract.</strong> This paper describes a new framework for classification of hyperspectral images, based on both spectral and spatial information. The spatial information is obtained by an enhanced Marker-based Hierarchical Segmentation (MHS) algorithm. The hyperspectral data is first fed into the Multi-Layer Perceptron (MLP) neural network classification algorithm. Then, the MHS algorithm is applied in order to increase the accuracy of less-accurately classified land-cover types. In the proposed approach, the markers are extracted from the classification maps obtained by MLP and Support Vector Machines (SVM) classifiers. Experimental results on Washington DC Mall hyperspectral dataset, demonstrate the superiority of proposed approach compared to the MLP and the original MHS algorithms.</p>


TecnoLógicas ◽  
2019 ◽  
Vol 22 (46) ◽  
pp. 1-14 ◽  
Author(s):  
Jorge Luis Bacca ◽  
Henry Arguello

Spectral image clustering is an unsupervised classification method which identifies distributions of pixels using spectral information without requiring a previous training stage. The sparse subspace clustering-based methods (SSC) assume that hyperspectral images lie in the union of multiple low-dimensional subspaces.  Using this, SSC groups spectral signatures in different subspaces, expressing each spectral signature as a sparse linear combination of all pixels, ensuring that the non-zero elements belong to the same class. Although these methods have shown good accuracy for unsupervised classification of hyperspectral images, the computational complexity becomes intractable as the number of pixels increases, i.e. when the spatial dimension of the image is large. For this reason, this paper proposes to reduce the number of pixels to be classified in the hyperspectral image, and later, the clustering results for the missing pixels are obtained by exploiting the spatial information. Specifically, this work proposes two methodologies to remove the pixels, the first one is based on spatial blue noise distribution which reduces the probability to remove cluster of neighboring pixels, and the second is a sub-sampling procedure that eliminates every two contiguous pixels, preserving the spatial structure of the scene. The performance of the proposed spectral image clustering framework is evaluated in three datasets showing that a similar accuracy is obtained when up to 50% of the pixels are removed, in addition, it is up to 7.9 times faster compared to the classification of the data sets without incomplete pixels.


2018 ◽  
Vol 8 (2) ◽  
pp. 20170039 ◽  
Author(s):  
Zhan Li ◽  
Michael Schaefer ◽  
Alan Strahler ◽  
Crystal Schaaf ◽  
David Jupp

The Dual-Wavelength Echidna Lidar (DWEL), a full waveform terrestrial laser scanner (TLS), has been used to scan a variety of forested and agricultural environments. From these scanning campaigns, we summarize the benefits and challenges given by DWEL's novel coaxial dual-wavelength scanning technology, particularly for the three-dimensional (3D) classification of vegetation elements. Simultaneous scanning at both 1064 nm and 1548 nm by DWEL instruments provides a new spectral dimension to TLS data that joins the 3D spatial dimension of lidar as an information source. Our point cloud classification algorithm explores the utilization of both spectral and spatial attributes of individual points from DWEL scans and highlights the strengths and weaknesses of each attribute domain. The spectral and spatial attributes for vegetation element classification each perform better in different parts of vegetation (canopy interior, fine branches, coarse trunks, etc.) and under different vegetation conditions (dead or live, leaf-on or leaf-off, water content, etc.). These environmental characteristics of vegetation, convolved with the lidar instrument specifications and lidar data quality, result in the actual capabilities of spectral and spatial attributes to classify vegetation elements in 3D space. The spectral and spatial information domains thus complement each other in the classification process. The joint use of both not only enhances the classification accuracy but also reduces its variance across the multiple vegetation types we have examined, highlighting the value of the DWEL as a new source of 3D spectral information. Wider deployment of the DWEL instruments is in practice currently held back by challenges in instrument development and the demands of data processing required by coaxial dual- or multi-wavelength scanning. But the simultaneous 3D acquisition of both spectral and spatial features, offered by new multispectral scanning instruments such as the DWEL, opens doors to study biophysical and biochemical properties of forested and agricultural ecosystems at more detailed scales.


Author(s):  
Pier Luigi Paolillo ◽  
Umberto Baresi ◽  
Roberto Bisceglie

Centrality of landscape, in territorial planning, has been influencing for years, the testing of innovative analytical techniques aimed to gather peculiarities of urban and suburban context. The advent of Spatial Information System created the possibility to produce more detailed studies analyzing a lot of information dealing with territorial phenomena of crucial importance in spatial planning. The development of analytical systems based on multidimensional analysis may represent the right way to synthesize different phenomena that interact locally, in order to obtain the intrinsic sensitivity of a specific landscape as a result. In the case of Cremona Urban Variant, the production of thematic maps has allowed the construction of six synthetic indicators, dealing with specific aspects of Cremona landscape. The indicators are: i) insularisation of non – built spaces, ii) morphological / structural values, iii) perceptual landscape aspects, iv) permanence of urban system, v) degree of imperativeness of environmental constraints, vi) integrity of land use.


Forests ◽  
2020 ◽  
Vol 11 (3) ◽  
pp. 362 ◽  
Author(s):  
Jody Vogeler ◽  
Robert Slesak ◽  
Patrick Fekety ◽  
Michael Falkowski

Spatial information about disturbance driven patterns of forest structure and ages across landscapes provide a valuable resource for all land management efforts including cross-ownership collaborative forest treatments and restoration. While disturbance events in general are known to impact stand characteristics, the agent of change may also influence recovery and the supply of ecosystem services. Our study utilizes the full extent of the Landsat archive to identify the timing, extent, magnitude, and agent, of the most recent fast disturbance event for all forested lands within Minnesota, USA. To account for the differences in the Landsat sensors through time, specifically the coarser spatial, spectral, and radiometric resolutions of the early MSS sensors, we employed a two-step approach, first harmonizing spectral indices across the Landsat sensors, then applying a segmentation algorithm to fit temporal trends to the time series to identify abrupt forest disturbance events. We further incorporated spectral, topographic, and land protection information in our classification of the agent of change for all disturbance patches. After allowing two years for the time series to stabilize, we were able to identify the most recent fast disturbance events across Minnesota from 1974–2018 with a change versus no-change validation accuracy of 97.2% ± 1.9%, and higher omission (14.9% ± 9.3%) than commission errors (1.6% ± 1.9%) for the identification of change patches. Our classification of the agent of change exhibited an overall accuracy of 96.5% ± 1.9% with classes including non-disturbed forest, land conversion, fire, flooding, harvest, wind/weather, and other rare natural events. Individual class errors varied, but all class user and producer accuracies were above 78%. The unmatched nature of the Landsat archive for providing comparable forest attribute and change information across more than four decades highlights the value of the totality of the Landsat program to the larger geospatial, ecological research, and forest management communities.


2017 ◽  
Vol 25 (10) ◽  
pp. 1832-1842 ◽  
Author(s):  
Radhika Menon ◽  
Gaetano Di Caterina ◽  
Heba Lakany ◽  
Lykourgos Petropoulakis ◽  
Bernard A. Conway ◽  
...  

2020 ◽  
Vol 9 (9) ◽  
pp. 499
Author(s):  
Melanie Brauchler ◽  
Johannes Stoffels

Up-to-date information about the type and spatial distribution of forests is an essential element in both sustainable forest management and environmental monitoring and modelling. The OpenStreetMap (OSM) database contains vast amounts of spatial information on natural features, including forests (landuse=forest). The OSM data model includes describing tags for its contents, i.e., leaf type for forest areas (i.e., leaf_type=broadleaved). Although the leaf type tag is common, the vast majority of forest areas are tagged with the leaf type mixed, amounting to a total area of 87% of landuse=forests from the OSM database. These areas comprise an important information source to derive and update forest type maps. In order to leverage this information content, a methodology for stratification of leaf types inside these areas has been developed using image segmentation on aerial imagery and subsequent classification of leaf types. The presented methodology achieves an overall classification accuracy of 85% for the leaf types needleleaved and broadleaved in the selected forest areas. The resulting stratification demonstrates that through approaches, such as that presented, the derivation of forest type maps from OSM would be feasible with an extended and improved methodology. It also suggests an improved methodology might be able to provide updates of leaf type to the OSM database with contributor participation.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2398 ◽  
Author(s):  
Bin Xie ◽  
Hankui K. Zhang ◽  
Jie Xue

In classification of satellite images acquired over smallholder agricultural landscape with complex spectral profiles of various crop types, exploring image spatial information is important. The deep convolutional neural network (CNN), originally designed for natural image recognition in the computer vision field, can automatically explore high level spatial information and thus is promising for such tasks. This study tried to evaluate different CNN structures for classification of four smallholder agricultural landscapes in Heilongjiang, China using pan-sharpened 2 m GaoFen-1 (meaning high resolution in Chinese) satellite images. CNN with three pooling strategies: without pooling, with max pooling and with average pooling, were evaluated and compared with random forest. Two different numbers (~70,000 and ~290,000) of CNN learnable parameters were examined for each pooling strategy. The training and testing samples were systematically sampled from reference land cover maps to ensure sample distribution proportional to the reference land cover occurrence and included 60,000–400,000 pixels to ensure effective training. Testing sample classification results in the four study areas showed that the best pooling strategy was the average pooling CNN and that the CNN significantly outperformed random forest (2.4–3.3% higher overall accuracy and 0.05–0.24 higher kappa coefficient). Visual examination of CNN classification maps showed that CNN can discriminate better the spectrally similar crop types by effectively exploring spatial information. CNN was still significantly outperformed random forest using training samples that were evenly distributed among classes. Furthermore, future research to improve CNN performance was discussed.


Sign in / Sign up

Export Citation Format

Share Document