scholarly journals A Custom-Made Lower Limb Dynamometer for Assessing Ankle Joint Torque in Humans: Calibration and Measurement Procedures

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 135
Author(s):  
Iulia Iovanca Drăgoi ◽  
Florina Georgeta Popescu ◽  
Teodor Petrița ◽  
Romulus Fabian Tatu ◽  
Cosmina Ioana Bondor ◽  
...  

Custom-made dynamometry was shown to objectively analyze human muscle strength around the ankle joint with accuracy, easy portability and low costs. This paper describes the full method of calibration and measurement setup and the measurement procedure when capturing ankle torque for establishing reliability of a portable custom-built electronic dynamometer. After considering the load cell offset voltage, the pivotal position was determined, and calibration with loads followed. Linear regression was used for calculating the proportionality constant between torque and measured voltage. Digital means were used for data collection and processing. Four healthy consenting participants were enrolled in the study. Three consecutive maximum voluntary isometric contractions of five seconds each were registered for both feet during plantar flexion/dorsiflexion, and ankle torque was then calculated for three ankle inclinations. A calibration procedure resulted, comprising determination of the pivotal axis and pedal constant. Using the obtained data, a measurement procedure was proposed. Obtained contraction time graphs led to easier filtering of the results. When calculating the interclass correlation, the portable apparatus demonstrated to be reliable when measuring ankle torque. When a custom-made dynamometer was used for capturing ankle torque, accuracy of the method was assured by a rigorous calibration and measurement protocol elaboration.

2013 ◽  
Vol 29 (4) ◽  
pp. 468-473 ◽  
Author(s):  
Hiroshi Arakawa ◽  
Akinori Nagano ◽  
Dean C. Hay ◽  
Hiroaki Kanehisa

The current study aimed to investigate the effect of ankle restriction on the coordination of vertical jumping and discuss the influence of energy transfer through m. gastrocnemius on the multijoint movement. Eight participants performed two types of vertical jumps: a normal squat jump, and a squat jump with restricted ankle joint movement. Mechanical outputs were calculated using an inverse dynamics analysis. Custom-made shoes were used to restrict plantar flexion, resulting in significantly (P < .001) reduced maximum power and work at the ankle joint to below 2% and 3%, while maintaining natural range of motion at the hip and knee. Based on the comparison between the two types of jumps, we determined that the ankle restriction increased (P < .001) the power (827 ± 346 W vs. 1276 ± 326 W) and work (92 ± 34 J vs. 144 ± 36 J) at the knee joint. A large part of the enhanced output at the knee is assumed to be due to ankle restriction, which results in the nullification of energy transport via m. gastrocnemius; that is, reduced contribution of the energy transfer with ankle restriction appeared as augmentation at the knee joint.


2021 ◽  
Vol 90 ◽  
pp. 221-222
Author(s):  
F. Salami ◽  
M. Goetze ◽  
M. Thielen ◽  
S.I. Wolf

2021 ◽  
pp. 1-6
Author(s):  
Afsaneh Moosaei Saein ◽  
Ziaeddin Safavi-Farokhi ◽  
Atefeh Aminianfar ◽  
Marzieh Mortezanejad

Context: Plantar fasciitis (PF) is a common and devastating disease. Despite different treatments, there is no clear evidence for the effect of these treatments on PF. One of the therapy methods used in physiotherapy is dry needling (DN). So the purpose of this study is to investigate the effect of DN on the pain and range of motion of the ankle joint and plantar fascia thickness in subjects with PF who are suffering from the trigger points of the gastrocnemius and soleus muscles. Methods: In this study, 20 volunteer females with PF were randomly assigned into DN treatment and control groups. Measurements were range of motion in dorsiflexion and plantar flexion, plantar fascia thickness, and visual analog scale measured before, immediately, and 1 month after the end of the intervention in both groups. Results: There were significant differences in the plantar fascia thickness and visual analog scale between the 2 groups. Plantar fascia thickness (P = .016) and visual analog scale (P = .03) significantly decreased in the treatment group. However, there was no significant difference in plantar flexion (P = .582) and dorsiflexion range of motion (P = .173) between groups. Conclusion: The result of this study showed that DN can reduce pain and plantar fascia thickness in women with PF who are suffering from trigger points of the gastrocnemius and soleus muscles. Level of evidence: Level 1, randomized controlled trial.


2017 ◽  
Vol 12 (4) ◽  
pp. 448-454 ◽  
Author(s):  
Erik Schrödter ◽  
Gert-Peter Brüggemann ◽  
Steffen Willwacher

Purpose:To describe the stretch-shortening behavior of ankle plantar-flexing muscle–tendon units (MTUs) during the push-off in a sprint start.Methods:Fifty-four male (100-m personal best: 9.58–12.07 s) and 34 female (100-m personal best: 11.05–14.00 s) sprinters were analyzed using an instrumented starting block and 2-dimensional high-speed video imaging. Analysis was performed separately for front and rear legs, while accounting for block obliquities and performance levels.Results:The results showed clear signs of a dorsiflexion in the upper ankle joint (front block 15.8° ± 7.4°, 95% CI 13.2–18.2°; rear block 8.0° ± 5.7°, 95% CI 6.4–9.7°) preceding plantar flexion. When observed in their natural block settings, the athletes’ block obliquity did not significantly affect push-off characteristics. It seems that the stretch-shortening-cycle-like motion of the soleus MTU has an enhancing influence on push-off force generation.Conclusion:This study provides the first systematic observation of ankle-joint stretch-shortening behavior for sprinters of a wide range of performance levels. The findings highlight the importance of reactive-type training for the improvement of starting performance. Nonetheless, future studies need to resolve the independent contributions of tendinous and muscle-fascicle structures to overall MTU performance.


2018 ◽  
Vol 3 (3) ◽  
pp. 2473011418S0030
Author(s):  
Joseph Labrum ◽  
Thomas Harris ◽  
Stephen Shymon ◽  
Harinee Maiyuran

Category: Arthroscopy Introduction/Purpose: Flexor Hallucis Longus (FHL) tenosynovitis is a common cause of posterior ankle pain, typically associated with repetitive plantar flexion activities. The purpose of this study was to report the results of patients with FHL tenosynovitis treated with posterior ankle arthroscopy using validated outcome measures and develop a zone-based classification of FHL tenosynovitis that demonstrates well correlated preoperative imaging and intraoperative findings. Methods: Posterior ankle arthroscopy was performed in 11 patients (12 ankles) with a diagnosis of FHL tenosynovitis, with patients followed for a minimum of two years (mean 44 months). Outcomes were evaluated using validated scoring measures, including visual analog scales (VAS) for pain, 12-Item Short Form Health Survey (SF-12), and the Foot and Ankle Ability Measure (FAAM). Results: A zonal classification scheme based on anatomic location was developed, divided into three zones: proximal to the ankle joint, posterior to the ankle joint, and from the fibro-osseous tunnel underneath the sustentaculum tali to the FHL insertion. Agreement between preoperative MRI and arthroscopic zonal involvement at time of surgery was present in ten feet (83%), and differed in two feet (17%). VAS scores improved significantly from 7.1 ± 1.4 preoperatively to 1.3 ± 1.3 postoperatively (p <0.001). Mean values for ADL and sports subscales of the FAAM at time of follow up were 87.1 ± 16.2 and 76.5 ± 28.8, respectively. Physical component summary (PCS) and mental component summary (MCS) of the SF-12 yielded means of 51.3 ±12.8 and 52.7 ± 5.0, respectively. Conclusion: FHL pathology can be classified using a zone-based classification scheme, which is highly correlative between preoperative MRI and intraoperative findings. Posterior ankle arthroscopy is an effective treatment option for FHL tenosynovitis, as evaluated using validated outcome measures.


Sensors ◽  
2020 ◽  
Vol 20 (8) ◽  
pp. 2210
Author(s):  
Masaru Takeuchi ◽  
Keita Watanabe ◽  
Kanta Ishihara ◽  
Taichi Miyamoto ◽  
Katsuhiro Tokutake ◽  
...  

Peripheral nerve disconnections cause severe muscle atrophy and consequently, paralysis of limbs. Reinnervation of denervated muscle by transplanting motor neurons and applying Functional Electrical Stimulation (FES) onto peripheral nerves is an important procedure for preventing irreversible degeneration of muscle tissues. After the reinnervation of denervated muscles, multiple peripheral nerves should be stimulated independently to control joint motion and reconstruct functional movements of limbs by the FES. In this study, a wirelessly powered two-channel neurostimulator was developed with the purpose of applying selective FES to two peripheral nerves—the peroneal nerve and the tibial nerve in a rat. The neurostimulator was designed in such a way that power could be supplied wirelessly, from a transmitter coil to a receiver coil. The receiver coil was connected, in turn, to the peroneal and tibial nerves in the rat. The receiver circuit had a low pass filter to allow detection of the frequency of the transmitter signal. The stimulation of the nerves was switched according to the frequency of the transmitter signal. Dorsal/plantar flexion of the rat ankle joint was selectively induced by the developed neurostimulator. The rat ankle joint angle was controlled by changing the stimulation electrode and the stimulation current, based on the Proportional Integral (PI) control method using a visual feedback control system. This study was aimed at controlling the leg motion by stimulating the peripheral nerves using the neurostimulator.


2008 ◽  
Vol 43 (1) ◽  
pp. 37-43 ◽  
Author(s):  
Thomas Kernozek ◽  
Christopher J. Durall ◽  
Allison Friske ◽  
Matthew Mussallem

Abstract Context: Ankle braces may enhance ankle joint proprioception, which in turn may affect reflexive ankle muscle activity during a perturbation. Despite the common occurrence of plantar-flexion inversion ankle injuries, authors of previous studies of ankle muscle latencies have focused on inversion stresses only. Objective: To examine the latency of the peroneus longus (PL), peroneus brevis (PB), and tibialis anterior (TA) muscles in response to various degrees of combined plantar-flexion and inversion stresses in braced and unbraced asymptomatic ankles. Design: Repeated measures. Setting: University biomechanics laboratory. Patients or Other Participants: Twenty-eight healthy females and 12 healthy males (n = 40: mean age = 23.63 years, range = 19 to 30 years; height = 172.75 ± 7.96 cm; mass = 65.53 ± 12.0 kg). Intervention(s): Participants were tested under 2 conditions: wearing and not wearing an Active Ankle T1 brace while dropping from a custom-made platform into 10°, 20°, and 30° of plantar flexion and 30° of inversion. Main Outcome Measure(s): The time between platform drop and the onset of PL, PB, and TA electromyographic activity was measured to determine latencies. We calculated a series of 2-way analyses of variance to determine if latencies were different between the conditions (braced and unbraced) and among the plantar-flexion angles (α = .05). Results: No interaction was found between condition and plantar-flexion angle. No significant main effects were found for condition or plantar-flexion angle. Overall means for braced and unbraced conditions were not significantly different for each muscle tested. Overall means for angle for the PL, PB, and TA were not significantly different. Conclusions: Reflexive activity of the PL, PB, or TA was unaffected by the amount of plantar flexion or by wearing an Active Ankle T1 brace during an unanticipated plantar-flexion inversion perturbation.


2007 ◽  
Vol 102 (1) ◽  
pp. 18-25 ◽  
Author(s):  
Gavin J. Pinniger ◽  
Andrew G. Cresswell

Stretch of an activated muscle causes a transient increase in force during the stretch and a sustained, residual force enhancement (RFE) after the stretch. The purpose of this study was to determine whether RFE is present in human muscles under physiologically relevant conditions (i.e., when stretches were applied within the working range of large postural leg muscles and under submaximal voluntary activation). Submaximal voluntary plantar flexion (PFv) and dorsiflexion (DFv) activation was maintained by providing direct visual feedback of the EMG from soleus or tibialis anterior, respectively. RFE was also examined during electrical stimulation of the plantar flexion muscles (PFs). Constant-velocity stretches (15°/s) were applied through a range of motion of 15° using a custom-built ankle torque motor. The muscles remained active throughout the stretch and for at least 10 s after the stretch. In all three activation conditions, the stable joint torque measured 9–10 s after the stretch was greater than the isometric joint torque at the final joint angle. When expressed as a percentage of the isometric torque, RFE values were 7, 13, and 12% for PFv, PFs, DFv, respectively. These findings indicate that RFE is a characteristic of human skeletal muscle and can be observed during submaximal (25%) voluntary activation when stretches are applied on the ascending limb of the force-length curve. Although the underlying mechanisms are unclear, it appears that sarcomere popping and passive force enhancement are insufficient to explain the presence of RFE in these experiments.


Sign in / Sign up

Export Citation Format

Share Document