Wireless Power Transfer Approaches for Medical Implants: A Review
Wireless power transmission (WPT) is a critical technology that provides an alternative for wireless power and communication with implantable medical devices (IMDs). This article provides a study concentrating on popular WPT techniques for IMDs including inductive coupling, microwave, ultrasound, and hybrid wireless power transmission (HWPT) systems. Moreover, an overview of the major works is analyzed with a comparison of the symmetric and asymmetric design elements, operating frequency, distance, efficiency, and harvested power. In general, with respect to the operating frequency, it is concluded that the ultrasound-based and inductive-based WPTs have a low operating frequency of less than 50 MHz, whereas the microwave-based WPT works at a higher frequency. Moreover, it can be seen that most of the implanted receiver’s dimension is less than 30 mm for all the WPT-based methods. Furthermore, the HWPT system has a larger receiver size compared to the other methods used. In terms of efficiency, the maximum power transfer efficiency is conducted via inductive-based WPT at 95%, compared to the achievable frequencies of 78%, 50%, and 17% for microwave-based, ultrasound-based, and hybrid WPT, respectively. In general, the inductive coupling tactic is mostly employed for transmission of energy to neuro-stimulators, and the ultrasonic method is used for deep-seated implants.