scholarly journals Constructing Patent Maps Using Text Mining to Sustainably Detect Potential Technological Opportunities

2018 ◽  
Vol 10 (10) ◽  
pp. 3729 ◽  
Author(s):  
Hei Wang ◽  
Yung Chi ◽  
Ping Hsin

With the advent of the knowledge economy, firms often compete for intellectual property rights. Being the first to acquire high-potential patents can assist firms in achieving future competitive advantages. To identify patents capable of being developed, firms often search for a focus by using existing patent documents. Because of the rapid development of technology, the number of patent documents is immense. A prominent topic among current firms is how to use this large number of patent documents to discover new business opportunities while avoiding conflicts with existing patents. In the search for technological opportunities, a crucial task is to present results in the form of an easily understood visualization. Currently, natural language processing can help in achieving this goal. In natural language processing, word sense disambiguation (WSD) is the problem of determining which “sense” (meaning) of a word is activated in a given context. Given a word and its possible senses, as defined by a dictionary, we classify the occurrence of a word in context into one or more of its sense classes. The features of the context (such as neighboring words) provide evidence for these classifications. The current method for patent document analysis warrants improvement in areas, such as the analysis of many dimensions and the development of recommendation methods. This study proposes a visualization method that supports semantics, reduces the number of dimensions formed by terms, and can easily be understood by users. Since polysemous words occur frequently in patent documents, we also propose a WSD method to decrease the calculated degrees of distortion between terms. An analysis of outlier distributions is used to construct a patent map capable of distinguishing similar patents. During the development of new strategies, the constructed patent map can assist firms in understanding patent distributions in commercial areas, thereby preventing patent infringement caused by the development of similar technologies. Subsequently, technological opportunities can be recommended according to the patent map, aiding firms in assessing relevant patents in commercial areas early and sustainably achieving future competitive advantages.

Author(s):  
Marina Sokolova ◽  
Stan Szpakowicz

This chapter presents applications of machine learning techniques to traditional problems in natural language processing, including part-of-speech tagging, entity recognition and word-sense disambiguation. People usually solve such problems without difficulty or at least do a very good job. Linguistics may suggest labour-intensive ways of manually constructing rule-based systems. It is, however, the easy availability of large collections of texts that has made machine learning a method of choice for processing volumes of data well above the human capacity. One of the main purposes of text processing is all manner of information extraction and knowledge extraction from such large text. Machine learning methods discussed in this chapter have stimulated wide-ranging research in natural language processing and helped build applications with serious deployment potential.


2015 ◽  
Vol 77 (18) ◽  
Author(s):  
Wai-Howe Khong ◽  
Lay-Ki Soon ◽  
Hui-Ngo Goh

Sentiment analysis has emerged as one of the most powerful tools in business intelligence. With the aim of proposing an effective sentiment analysis technique, we have performed experiments on analyzing the sentiments of 3,424 tweets using both statistical and natural language processing (NLP) techniques as part of our background study.  For statistical technique, machine learning algorithms such as Support Vector Machines (SVMs), decision trees and Naïve Bayes have been explored. The results show that SVM consistently outperformed the rest in both classifications. As for sentiment analysis using NLP techniques, we used two different tagging methods for part-of-speech (POS) tagging.  Subsequently, the output is used for word sense disambiguation (WSD) using WordNet, followed by sentiment identification using SentiWordNet.  Our experimental results indicate that adjectives and adverbs are sufficient to infer the sentiment of tweets compared to other combinations. Comparatively, the statistical approach records higher accuracy than the NLP approach by approximately 17%.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yuntong Liu ◽  
Hua Sun

In order to use semantics more effectively in natural language processing, a word sense disambiguation method for Chinese based on semantics calculation was proposed. The word sense disambiguation for a Chinese clause could be achieved by solving the semantic model of the natural language; each step of the word sense disambiguation process was discussed in detail; and the computational complexity of the word sense disambiguation process was analyzed. Finally, some experiments were finished to verify the effectiveness of the method.


2012 ◽  
Vol 182-183 ◽  
pp. 2109-2112
Author(s):  
Lin Lin Yu ◽  
Deng Feng Xu ◽  
Li Fang Song ◽  
Guo Jie Li ◽  
Xu Dong Song

Word sense disambiguation (WSD) is a critical and difficult issue in natural language processing(NLP), as well as WSD is great significance in large area of research areas of NLP. This paper presents a method of multi-word sense disambiguation strategy. The method combines the method based on match word corpus and the method based on the similarity and relevance very well. While the calculation of similarity and relevance are make full use of the sememe-tree information from HowNet. The experiments show that the proposed WSD method can obtain better results.


Author(s):  
Mr. Prashant Y. Itankar ◽  
Dr. Nikhat Raza

Execution of Word Sense Disambiguation (WSD) is one of the difficult undertakings in the space of Natural language processing (NLP). Age of sense clarified corpus for multilingual WSD is far off for most languages regardless of whether assets are accessible. In this paper we propose a solo technique utilizing word and sense embeddings for working on the presentation of WSD frameworks utilizing untagged corpora and make two bags to be specific context bag and wiki sense bag to create the faculties with most noteworthy closeness. Wiki sense bag gives outer information to the framework needed to help the disambiguation exactness. We investigate Word2Vec model to produce the sense back and notice huge execution acquire for our dataset.


2019 ◽  
Author(s):  
Qasem Al-Tashi

In the process of natural language, a lot of words have different connotations. The correct sense of a word depends upon the context in which the word occurs. Word sense disambiguation known as the process of selecting the most correct sense of the word in a given sentence. Furthermore, Most of natural language processing applications, such as the extraction of information, machine translation, and Analysing of content are supported by the process of word sense disambiguation which can be an essential pre-processing step for them.


Author(s):  
Prashant Y. Itankar ◽  
Nikhat Raza

Natural language processing (NLP) is very much needed in today’s world to enhance human-machine interaction. It is an important concern to process textual data and obtain useful and meaningful information from these texts. NLP parses the texts and provides information to machine for further processing. The present status of NLP’s computational process of identifying the meaning (sense) of a word in a particular context is ambiguous, where the meaning of word in the context is not clear and may point to multiple senses. Ambiguity in understanding correct meaning of texts is hampering the growth and development in various fields of Natural language processing applications like Machine translation, Human Machine interface etc. The process of finding the correct meaning of the ambiguous texts in the given context is called as word sense disambiguation (WSD). WSD is perceived as one of the most challenging problem in the Natural language processing community and is still unsolved. It is evident that different ambiguities exist in natural languages and researchers are contributing to resolve the problem in different languages for successful disambiguation. These ambiguities must be resolved in order to understand the meaning of the text and help to boost NLP processing and applications. Objective is to investigate how WSD can be used to alleviate ambiguities, automatically determine the correct meaning of the ambiguous text and help to boost NLP processing and applications. Resolving ambiguity for translation involves working with various natural language processing techniques to investigate the structure of the languages, availability of lexical resources etc. Word Sense Disambiguation (WSD) in the field of computing linguistics is an area which is still unsolved. This paper focus on the in-depth analysis of such ambiguity, issues in Language Translation, how WSD resolves the ambiguity and contribute towards building a framework.


Sign in / Sign up

Export Citation Format

Share Document