scholarly journals Predicting Corporate Financial Sustainability Using Novel Business Analytics

2018 ◽  
Vol 11 (1) ◽  
pp. 64 ◽  
Author(s):  
Kyoung-jae Kim ◽  
Kichun Lee ◽  
Hyunchul Ahn

Measuring and managing the financial sustainability of the borrowers is crucial to financial institutions for their risk management. As a result, building an effective corporate financial distress prediction model has been an important research topic for a long time. Recently, researchers are exerting themselves to improve the accuracy of financial distress prediction models by applying various business analytics approaches including statistical and artificial intelligence methods. Among them, support vector machines (SVMs) are becoming popular. SVMs require only small training samples and have little possibility of overfitting if model parameters are properly tuned. Nonetheless, SVMs generally show high prediction accuracy since it can deal with complex nonlinear patterns. Despite of these advantages, SVMs are often criticized because their architectural factors are determined by heuristics, such as the parameters of a kernel function and the subsets of appropriate features and instances. In this study, we propose globally optimized SVMs, denoted by GOSVM, a novel hybrid SVM model designed to optimize feature selection, instance selection, and kernel parameters altogether. This study introduces genetic algorithm (GA) in order to simultaneously optimize multiple heterogeneous design factors of SVMs. Our study applies the proposed model to the real-world case for predicting financial distress. Experiments show that the proposed model significantly improves the prediction accuracy of conventional SVMs.

2019 ◽  
Vol 12 (2) ◽  
pp. 55 ◽  
Author(s):  
Sumaira Ashraf ◽  
Elisabete G. S. Félix ◽  
Zélia Serrasqueiro

Purpose: This study aims to compare the prediction accuracy of traditional distress prediction models for the firms which are at an early and advanced stage of distress in an emerging market, Pakistan, during 2001–2015. Design/methodology/approach: The methodology involves constructing model scores for financially distressed and stable firms and then comparing the prediction accuracy of the models with the original position. In addition to the testing for the whole sample period, comparison of the accuracy of the distress prediction models before, during, and after the financial crisis was also done. Findings: The results indicate that the three-variable probit model has the highest overall prediction accuracy for our sample, while the Z-score model more accurately predicts insolvency for both types of firms, i.e., those that are at an early stage as well as those that are at an advanced stage of financial distress. Furthermore, the study concludes that the predictive ability of all the traditional financial distress prediction models declines during the period of the financial crisis. Originality/value: An important contribution is the widening of the definition of financially distressed firms to consider the early warning signs related to failure in dividend/bonus declaration, quotation of face value, annual general meeting, and listing fee. Further, the results suggest that there is a need to develop a model by identifying variables which will have a higher impact on the financial distress of firms operating in both developed and developing markets.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1886
Author(s):  
Michal Pavlicko ◽  
Marek Durica ◽  
Jaroslav Mazanec

The issue of prediction of financial state, or especially the threat of the financial distress of companies, is very topical not only for the management of the companies to take the appropriate actions but also for all the stakeholders to know the financial health of the company and its possible future development. Therefore, the main aim of the paper is ensemble model creation for financial distress prediction. This model is created using the real data on more than 550,000 companies from Central Europe, which were collected from the Amadeus database. The model was trained and validated using 27 selected financial variables from 2016 to predict the financial distress statement in 2017. Five variables were selected as significant predictors in the model: current ratio, return on equity, return on assets, debt ratio, and net working capital. Then, the proposed model performance was evaluated using the values of the variables and the state of the companies in 2017 to predict financial status in 2018. The results demonstrate that the proposed hybrid model created by combining methods, namely RobustBoost, CART, and k-NN with optimised structure, achieves better prediction results than using one of the methods alone. Moreover, the ensemble model is a new technique in the Visegrad Group (V4) compared with other prediction models. The proposed model serves as a one-year-ahead prediction model and can be directly used in the practice of the companies as the universal tool for estimation of the threat of financial distress not only in Central Europe but also in other countries. The value-added of the prediction model is its interpretability and high-performance accuracy.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sanjay Sehgal ◽  
Ritesh Kumar Mishra ◽  
Florent Deisting ◽  
Rupali Vashisht

PurposeThe main aim of the study is to identify some critical microeconomic determinants of financial distress and to design a parsimonious distress prediction model for an emerging economy like India. In doing so, the authors also attempt to compare the forecasting accuracy of alternative distress prediction techniques.Design/methodology/approachIn this study, the authors use two alternatives accounting information-based definitions of financial distress to construct a measure of financial distress. The authors then use the binomial logit model and two other popular machine learning–based models, namely artificial neural network and support vector machine, to compare the distress prediction accuracy rate of these alternative techniques for the Indian corporate sector.FindingsThe study’s empirical results suggest that five financial ratios, namely return on capital employed, cash flows to total liability, asset turnover ratio, fixed assets to total assets, debt to equity ratio and a measure of firm size (log total assets), play a highly significant role in distress prediction. The study’s findings suggest that machine learning-based models, namely support vector machine (SVM) and artificial neural network (ANN), are superior in terms of their prediction accuracy compared to the simple binomial logit model. Results also suggest that one-year-ahead forecasts are relatively better than the two-year-ahead forecasts.Practical implicationsThe findings of the study have some important practical implications for creditors, policymakers, regulators and other stakeholders. First, rather than monitoring and collecting information on a list of predictor variables, only six most important accounting ratios may be monitored to track the transition of a healthy firm into financial distress. Second, our six-factor model can be used to devise a sound early warning system for corporate financial distress. Three, machine learning–based distress prediction models have prediction accuracy superiority over the commonly used time series model in the available literature for distress prediction involving a binary dependent variable.Originality/valueThis study is one of the first comprehensive attempts to investigate and design a parsimonious distress prediction model for the emerging Indian economy which is currently facing high levels of corporate financial distress. Unlike the previous studies, the authors use two different accounting information-based measures of financial distress in order to identify an effective way of measuring financial distress. Some of the determinants of financial distress identified in this study are different from the popular distress prediction models used in the literature. Our distress prediction model can be useful for the other emerging markets for distress prediction.


2021 ◽  
Vol 14 (7) ◽  
pp. 333
Author(s):  
Shilpa H. Shetty ◽  
Theresa Nithila Vincent

The study aimed to investigate the role of non-financial measures in predicting corporate financial distress in the Indian industrial sector. The proportion of independent directors on the board and the proportion of the promoters’ share in the ownership structure of the business were the non-financial measures that were analysed, along with ten financial measures. For this, sample data consisted of 82 companies that had filed for bankruptcy under the Insolvency and Bankruptcy Code (IBC). An equal number of matching financially sound companies also constituted the sample. Therefore, the total sample size was 164 companies. Data for five years immediately preceding the bankruptcy filing was collected for the sample companies. The data of 120 companies evenly drawn from the two groups of companies were used for developing the model and the remaining data were used for validating the developed model. Two binary logistic regression models were developed, M1 and M2, where M1 was formulated with both financial and non-financial variables, and M2 only had financial variables as predictors. The diagnostic ability of the model was tested with the aid of the receiver operating curve (ROC), area under the curve (AUC), sensitivity, specificity and annual accuracy. The results of the study show that inclusion of the two non-financial variables improved the efficacy of the financial distress prediction model. This study made a unique attempt to provide empirical evidence on the role played by non-financial variables in improving the efficiency of corporate distress prediction models.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 443
Author(s):  
Chyan-long Jan

Because of the financial information asymmetry, the stakeholders usually do not know a company’s real financial condition until financial distress occurs. Financial distress not only influences a company’s operational sustainability and damages the rights and interests of its stakeholders, it may also harm the national economy and society; hence, it is very important to build high-accuracy financial distress prediction models. The purpose of this study is to build high-accuracy and effective financial distress prediction models by two representative deep learning algorithms: Deep neural networks (DNN) and convolutional neural networks (CNN). In addition, important variables are selected by the chi-squared automatic interaction detector (CHAID). In this study, the data of Taiwan’s listed and OTC sample companies are taken from the Taiwan Economic Journal (TEJ) database during the period from 2000 to 2019, including 86 companies in financial distress and 258 not in financial distress, for a total of 344 companies. According to the empirical results, with the important variables selected by CHAID and modeling by CNN, the CHAID-CNN model has the highest financial distress prediction accuracy rate of 94.23%, and the lowest type I error rate and type II error rate, which are 0.96% and 4.81%, respectively.


2016 ◽  
Vol 25 (3) ◽  
pp. 417-429
Author(s):  
Chong Wu ◽  
Lu Wang ◽  
Zhe Shi

AbstractFor the financial distress prediction model based on support vector machine, there are no theories concerning how to choose a proper kernel function in a data-dependent way. This paper proposes a method of modified kernel function that can availably enhance classification accuracy. We apply an information-geometric method to modifying a kernel that is based on the structure of the Riemannian geometry induced in the input space by the kernel. A conformal transformation of a kernel from input space to higher-dimensional feature space enlarges volume elements locally near support vectors that are situated around the classification boundary and reduce the number of support vectors. This paper takes the Gaussian radial basis function as the internal kernel. Additionally, this paper combines the above method with the theories of standard regularization and non-dimensionalization to construct the new model. In the empirical analysis section, the paper adopts the financial data of Chinese listed companies. It uses five groups of experiments with different parameters to compare the classification accuracy. We can make the conclusion that the model of modified kernel function can effectively reduce the number of support vectors, and improve the classification accuracy.


Mathematics ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 1275
Author(s):  
Dawen Yan ◽  
Guotai Chi ◽  
Kin Keung Lai

In this paper, we propose a new framework of a financial early warning system through combining the unconstrained distributed lag model (DLM) and widely used financial distress prediction models such as the logistic model and the support vector machine (SVM) for the purpose of improving the performance of an early warning system for listed companies in China. We introduce simultaneously the 3~5-period-lagged financial ratios and macroeconomic factors in the consecutive time windows t − 3, t − 4 and t − 5 to the prediction models; thus, the influence of the early continued changes within and outside the company on its financial condition is detected. Further, by introducing lasso penalty into the logistic-distributed lag and SVM-distributed lag frameworks, we implement feature selection and exclude the potentially redundant factors, considering that an original long list of accounting ratios is used in the financial distress prediction context. We conduct a series of comparison analyses to test the predicting performance of the models proposed by this study. The results show that our models outperform logistic, SVM, decision tree and neural network (NN) models in a single time window, which implies that the models incorporating indicator data in multiple time windows convey more information in terms of financial distress prediction when compared with the existing singe time window models.


Sign in / Sign up

Export Citation Format

Share Document