distress prediction
Recently Published Documents


TOTAL DOCUMENTS

304
(FIVE YEARS 95)

H-INDEX

28
(FIVE YEARS 4)

2021 ◽  
Vol 0 (0) ◽  
pp. 1-34
Author(s):  
Fang-Jun Zhu ◽  
Lu-Juan Zhou ◽  
Mi Zhou ◽  
Feng Pei

In the Chinese stock market, the unique special treatment (ST) warning mechanism can signal financial distress for listed companies. In existing studies, classification model has been developed to differentiate the two general listing states. However, this classification model cannot explain the internal changes of each listing state. Considering that the requirement of the withdrawal of ST in the mechanism is relatively loose, we propose a new segmentation approach for Chinese listed companies, which are divided into negative companies and positive companies according to the number of times being labeled ST. Under the framework of data mining, we use financial indicators, non-financial indicators, and time series to build a financial distress prediction model of distinguishing the long-term development of different Chinese listed companies. Through data segmentation, we find that the negative samples have a huge destructive interference on the prediction effect of the total sample. On the contrary, positive companies improve the prediction accuracy in all aspects and the optimal feature set is also different from all companies. The main contribution of the paper is to analyze the internal impact of the deterioration of financial distress prediction in time series and construct an optimization model for positive companies.


2021 ◽  
pp. 105709
Author(s):  
Shuping Zhao ◽  
Kai Xu ◽  
Zhao Wang ◽  
Changyong Liang ◽  
Wenxing Lu ◽  
...  

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yasmine M. Ragab ◽  
Mohamed A. Saleh

PurposeThis study examines the effect of non-financial variables related to governance on the accuracy of financial distress prediction among Egyptian listed small and medium-sized enterprises (SMEs), by using the logistic regression technique.Design/methodology/approachThis study used a sample of 24 Egyptian-listed SMEs in each year, totaling 120 firm observations, of which 25 were classified distressed and 95 of them non-distressed between 2014 and 2018. The variables for the study included five financial variables and thirteen non-financial variables related to governance. The models were developed using financial variables alone as well as combining financial and non-financial variables related to governance.FindingsThe results showed that the model with financial variables had a prediction accuracy of 91.7% , whereas models with a combination of financial and non-financial variables related to governance predict with comparatively better accuracy of 92.7 and 93.6% .Research limitations/implicationsAlthough the results seem to be conclusive, it could be noted that the non-distressed sample was not paired with the distressed sample. Other studies showed that paired samples increase the financial distress prediction rate. Furthermore, due to the small sample size, this study was unable to create a hold-out sub-sample for the accuracy test.Practical implicationsThe proposed distress prediction model for SMEs is effective for stakeholders, including banks and other financial institutions, in the assessment of the credit risk of SMEs. Using such a model, they could better identify SMEs with a higher risk of failure in their lending decisions. Moreover, SME managers' could be interested in using such models as a tool for planning corrective action, in addition to planning and controlling current operations to avoid financial failure in the future.Originality/valueThis study contributes to financial distress prediction literature in different ways. First, few studies were conducted in the area of financial distress among SMEs. Second, neither of these studies was conducted within the Egyptian context, nor any of them had used non-financial variables related to governance in the prediction of financial distress among SMEs.


2021 ◽  
Vol 147 (3) ◽  
pp. 04021034
Author(s):  
Makendran Chandrakasu ◽  
Murugasan Rajiah ◽  
Velmurugan Senathipathi ◽  
Chalumuri Ravi Sekhar

Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1886
Author(s):  
Michal Pavlicko ◽  
Marek Durica ◽  
Jaroslav Mazanec

The issue of prediction of financial state, or especially the threat of the financial distress of companies, is very topical not only for the management of the companies to take the appropriate actions but also for all the stakeholders to know the financial health of the company and its possible future development. Therefore, the main aim of the paper is ensemble model creation for financial distress prediction. This model is created using the real data on more than 550,000 companies from Central Europe, which were collected from the Amadeus database. The model was trained and validated using 27 selected financial variables from 2016 to predict the financial distress statement in 2017. Five variables were selected as significant predictors in the model: current ratio, return on equity, return on assets, debt ratio, and net working capital. Then, the proposed model performance was evaluated using the values of the variables and the state of the companies in 2017 to predict financial status in 2018. The results demonstrate that the proposed hybrid model created by combining methods, namely RobustBoost, CART, and k-NN with optimised structure, achieves better prediction results than using one of the methods alone. Moreover, the ensemble model is a new technique in the Visegrad Group (V4) compared with other prediction models. The proposed model serves as a one-year-ahead prediction model and can be directly used in the practice of the companies as the universal tool for estimation of the threat of financial distress not only in Central Europe but also in other countries. The value-added of the prediction model is its interpretability and high-performance accuracy.


Sign in / Sign up

Export Citation Format

Share Document